202308311431 Solution to 2007-AL-PHY-IIA-9

A diver at a depth of d below the water surface looks up and finds that the sky appears to be within a circle of radius r. Which of the following correctly gives the expression for the critical angle?

A. \tan c=\displaystyle{\frac{r}{d}}
B. \sin c=\displaystyle{\frac{r}{d}}
C. \tan c=\displaystyle{\frac{d}{r}}
D. \sin c=\displaystyle{\frac{d}{r}}


Background.

The critical angle is the smallest angle of incidence that yields total reflection, or equivalently the largest angle for which a refracted ray exists.

Wikipedia on Critical angle (optics)

The light travelling from air to water cannot suffer total internal reflection because for total internal reflection, the essential condition is that light should travel from a denser medium to a rarer medium with incidence angle more than the critical angle.

Toppr on Total internal reflection


Roughwork. (making a short story long)

Subscripts \text{}_a and \text{}_w stand for air and water respectively.

\begin{aligned} n_w\sin \theta_w & = n_a\sin\theta_a \\ \textrm{Eq. (1):\qquad }\frac{n_w}{n_a} & = \frac{\sin\theta_a}{\sin\theta_w}} \\ \frac{\mathrm{d}}{\mathrm{d}t}\bigg( \frac{n_w}{n_a} \bigg) & = \frac{\mathrm{d}}{\mathrm{d}t}\bigg( \frac{\sin\theta_a}{\sin\theta_w}\bigg) \\ 0 & = \frac{\dot{\theta}_a\sin\theta_w\cos\theta_a-\dot{\theta}_w\sin\theta_a\cos\theta_w}{\sin^2\theta_w} \\ \textrm{Eq. (2):\qquad }\frac{\dot{\theta}_a}{\dot{\theta}_w} & = \frac{\tan\theta_a}{\tan\theta_w}=\textrm{non-constant}\\ \end{aligned}

At some height h above the water surface, where \theta_a is the angle of refraction:

\begin{aligned} \textrm{Eq. (3):\qquad }\tan\theta_a & = \frac{r_a}{h} \\ \textrm{where\qquad }\theta_a & \in [0,90^\circ] \\ \textrm{and \qquad }h & = \textrm{Const.}\in [0,\infty ) \\ r_a & = r_a(\theta_a) \in [0,\infty )\\ \end{aligned}

To some depth d beneath the water surface, where \theta_w is the angle of incidence:

\begin{aligned} \textrm{Eq. (4):\qquad }\tan\theta_w & = \frac{r_w}{d} \\ \textrm{where\qquad }\theta_w & \in [0,90^\circ] \\ \textrm{and \qquad }d & = \textrm{Const.}\in [0,\infty ) \\ r_w & = r_w(\theta_w ) \in [0,\infty ) \\ \end{aligned}

Differentiating \textrm{Eq. (3)} and \textrm{Eq. (4)}:

\begin{aligned} \textrm{Eq. (3)':\qquad }h\dot{\theta}_a\sec^2\theta_a & = \dot{r}_a \\ \dot{\theta}_a & = \frac{\dot{r}_a}{h\sec^2\theta_a} \\ \end{aligned}

\begin{aligned} \textrm{Eq. (4)':\qquad }d\dot{\theta}_w\sec^2\theta_w & = \dot{r}_w \\ \dot{\theta}_w & = \frac{\dot{r}_w}{d\sec^2\theta_w} \\ \end{aligned}

Dividing \textrm{Eq. (3)'} by \textrm{Eq. (4)'}:

\textrm{Eq. (5):\qquad }\displaystyle{\frac{\dot{\theta}_a}{\dot{\theta}_w} =\bigg(\frac{\dot{r}_a}{\dot{r}_w}\bigg) \bigg(\frac{d}{h}\bigg)\bigg(\frac{\sec^2\theta_w}{\sec^2\theta_a}\bigg)}

Equating \textrm{Eq. (2)} and \textrm{Eq. (5)}:

\begin{aligned} \textrm{Eq. (6):\qquad }\frac{\tan\theta_a}{\tan\theta_w} & =\bigg(\frac{\dot{r}_a}{\dot{r}_w}\bigg) \bigg(\frac{d}{h}\bigg)\bigg(\frac{\sec^2\theta_w}{\sec^2\theta_a}\bigg) \\ \frac{\tan\theta_a}{\tan\theta_w} & = \frac{(r_a/h)'}{(r_w/d)'}\bigg(\frac{\sec\theta_w}{\sec\theta_a}\bigg)^2\\ \frac{\tan\theta_a}{\tan\theta_w} & = \frac{(\tan\theta_a)'}{(\tan\theta_w)'}\bigg(\frac{\sec\theta_w}{\sec\theta_a}\bigg)^2\\ \frac{\tan\theta_a}{\tan\theta_w} & = \bigg(\frac{\dot{\theta}_a}{\dot{\theta}_w}\bigg)\bigg(\frac{\sec\theta_a}{\sec\theta_w}\bigg)^2\bigg(\frac{\sec\theta_w}{\sec\theta_a}\bigg)^2=\frac{\dot{\theta}_a}{\dot{\theta}_w}\\ \end{aligned}

This \textrm{Eq. (6)} is redundant as it is the same as \textrm{Eq. (2)}. Never mind. But rewrite \textrm{Eq. (6)} (/\textrm{Eq. (2)}) as follows:

\begin{aligned} \dot{\theta}_w\cot\theta_w & = \dot{\theta}_a\cot\theta_a \\ \frac{\mathrm{d}}{\mathrm{d}t}\big(\ln |\sin \theta_w|\big) & = \frac{\mathrm{d}}{\mathrm{d}t}\big(\ln |\sin \theta_a|\big) \\ \ln|\sin\theta_w| & = \ln|\sin\theta_a| \\ \theta_w & = k\pi -\theta_a \qquad (k\in\mathbb{Z})\\ \textrm{and}\qquad \theta_a & \geq \theta_w \\ \end{aligned}

Note that refractive index for air is (approximately) n_a=1,

\begin{aligned} \textrm{Eq. (7):\qquad }\frac{\sin\theta_a}{\sin\theta_w} & =n_w \\ \sin\theta_a & = n_w \sin\theta_w \\ \sin\theta_a & = n_w\sin (90^\circ-\theta_a) \\ \sin\theta_a & = n_w\cos\theta_a \\ \textrm{Eq. (7)':\qquad }n_w & =\tan\theta_a\\ \sin (90^\circ -\theta_w) & = n_w\sin\theta_w \\ \cos\theta_w & = n_w\sin\theta_w \\ \textrm{Eq. (7)'':\qquad }n_w & = \frac{1}{\tan\theta_w}} \\ \end{aligned}

Equating \textrm{Eq. (7)'} and \textrm{Eq. (7)''}:

\begin{aligned} \tan\theta_a & = \frac{1}{\tan\theta_w} \\ \tan\theta_a\tan\theta_w & = 1 \\ \textrm{Eq. (8):\qquad }\tan (90^\circ -\theta_w)\tan\theta_w & = 1 \\ \end{aligned}

Taking limit on \textrm{Eq. (8)},

\begin{aligned} \Big(\lim_{\theta_w\to c}\tan (90^\circ -\theta_w)\Big)\Big(\lim_{\theta_w\to c}\tan\theta_w\Big) & =1 \\ (\cot c)\bigg(\frac{r}{d}\bigg) & = 1 \\ \tan c & =\frac{r}{d} \\ \end{aligned}

And the answer is A.

202301110923 Solution to 1980-AL-PHY-IA-26

A charged ball X is suspended by a string.

When a uniform electric field E is applied horizontally, the ball is displaced a horizontal distance a such that the string makes an angle \theta with the vertical.


Roughwork.

As always start with a free-body diagram. Hence, draw

Resolving components, write

\begin{cases} \textrm{Horizontal:}\quad & T\sin\theta = qE \\ \textrm{Vertical:}\quad & T\cos\theta = mg \\ \end{cases}

Squaring and summing, write

\begin{aligned} (T\sin\theta )^2+ (T\cos\theta)^2 &=  (qE)^2 + (mg)^2\\ T & = \sqrt{q^2E^2+m^2g^2} \\ \end{aligned}

By considering the electric field strength E as an independent variable, and the angle of elevation \theta the dependent variable, make differentiation

\displaystyle{\mathrm{d}E = \bigg(\frac{T\cos\theta}{q}\bigg)\,\mathrm{d}\theta}\qquad(\theta\in [0,90^\circ])

This problem is not to be attempted.

201907280623 Solution to 1982-AL-PHY-I-7

(Non-relativistic approach.)

Set up a 2-D Cartesian coordinate system, the origin being in the position of body X at time t=0, and at the point (6,0) there being body Y.

Then the position of body X and of body Y can each be given by a function of time t:

\begin{aligned} \mathbf{r}_X(t) & = 3t\, \hat{\mathbf{i}} \\ \mathbf{r}_Y(t) & =6\, \hat{\mathbf{i}} + 4t\, \hat{\mathbf{j}} \end{aligned}

where t\in [0,\infty ).

The separation \mathbf{r}_{YX} of body Y from body X by time t is:

\mathbf{r}_{YX}(t)= \mathbf{r}_Y - \mathbf{r}_X =(6-3t)\, \hat{\mathbf{i}} + (4t)\, \hat{\mathbf{j}}.

The velocity \mathbf{v}_{YX} of body Y from body X is:

\begin{aligned} \mathbf{v}_{YX} & =\displaystyle{\frac{\mathrm{d}}{\mathrm{d}t}}\Big(\mathbf{r}_{YX}\Big) \\ & = -3\, \hat{\mathbf{i}} + 4\, \hat{\mathbf{j}} \end{aligned}

The magnitude v_{YX} of the velocity is

v_{YX}=|\mathbf{v}_{YX}|=\sqrt{(-3)^2+(4)^2}=5\quad (\mathrm{m\, s^{-1}}).

And the answer is B.


All above is overkill.

Notice \mathbf{v}_{YX}=\mathbf{v}_Y-\mathbf{v}_X = (0,4) - (3,0) = (-3,4) and v_{YX}=|(-3,4)|=5

201903310628 Solution to 1980-AL-PHY-I-23

Faraday’s law:

\varepsilon = -N \displaystyle{\frac{\mathrm{d}\Phi}{\mathrm{d}t}}

where \varepsilon is the e.m.f. induced, N the number of turns in the coil, \Phi the magnetic flux, also (\Phi =BA) the product of magnetic flux density B and area A, t the time, and the negative sign due to Lenz’s law.

The magnitude of the e.m.f. induced in the coil is therefore

\varepsilon = \bigg| -N\displaystyle{\frac{\Delta \Phi}{\Delta t}} \bigg| = \bigg| -N \displaystyle{\frac{\Phi -0}{t}} \bigg| = N\Phi /t.

And the answer is C.

201903080359 Solution to 2005-AL-PHY-IIA-12

We assume that the charges on a small sphere can be treated as one point charge.

At first, P, Q, and R are of charge \pm q, \mp q, and 0.

Then, P and R are put in contact and share their charges evenly. They are now of charge \pm \displaystyle{\frac{q}{2}}. We keep them separated afterwards.

Later on, R and Q are put in contact and share their charges evenly. Each of them is hence of charge:

\displaystyle{\frac{\bigg( \pm \displaystyle{\frac{q}{2}}\bigg) +(\mp q)}{2}}=\mp\displaystyle{\frac{q}{4}}.

We keep them separated afterwards.

The initial magnitude  F of electrostatic force between P and Q is given by:

F=\bigg| \displaystyle{k\frac{(\pm q)(\mp q)}{r^2}} \bigg|=k \displaystyle{\frac{q^2}{r^2}}

The final magnitude F' of electrostatic force between them is related to the initial F by:

F'=\bigg| \displaystyle{k\frac{ ( \pm \frac{q}{2}) (\mp \frac{q}{4})}{r^2}} \bigg|=\displaystyle{\frac{1}{8}}\bigg( k \displaystyle{\frac{q^2}{r^2}} \bigg) = \displaystyle{\frac{1}{8}}F

\begin{aligned} \quad & \quad  & \textrm{Initially} & \quad & \rightarrow & \quad & P\textrm{ and }R\textrm{ in touch} &\quad & \rightarrow & \quad & R\textrm{ and }Q\textrm{ in touch}\\ P &  & \pm q  & & & & \pm \displaystyle{\frac{q}{2}} & & & & \boxed{\pm \displaystyle{\frac{q}{2}}} \\ Q & &  \mp q  &  & & & \boxed{\mp q} & & & & \mp \displaystyle{\frac{q}{4}}\\ R & & 0  & & & & \pm \displaystyle{\frac{q}{2}} & & & & \mp \displaystyle{\frac{q}{4}} \end{aligned}

And the answer is B.