202104031305 Homework 1 (Q1)

Given two vectors \mathbf{A}=-4\,\hat{\mathbf{x}}-2\,\hat{\mathbf{y}}+\hat{\mathbf{z}} and \mathbf{B}=5\,\hat{\mathbf{x}}-3\,\hat{\mathbf{y}}-2\,\hat{\mathbf{z}}.

(a) Determine the angle \theta between \mathbf{A} and \mathbf{B}.

(b) Determine the angle that the vector \mathbf{A} makes with the y-axis, and the angle that the vector \mathbf{B} makes on the yz-plane when it is projected on it.

(c) The vector \mathbf{C} is the projection of vector \mathbf{A} on the xz-plane. Determine the unit vector along the direction of \mathbf{C}\times \mathbf{A}.

(d) Express the vector \mathbf{A} in terms of cylindrical coordinates, i.e., \mathbf{A}=a_r\,\hat{\mathbf{r}}+a_\theta\,\hat{\boldsymbol{\theta}}+a_z\,\hat{\mathbf{z}}, with vectors \hat{\mathbf{r}}, \hat{\boldsymbol{\theta}}, and \hat{\mathbf{z}} defined by the vector \mathbf{A}. Determine the unit vectors \hat{\mathbf{r}}, \hat{\boldsymbol{\theta}}, and \hat{\mathbf{z}} in terms of \hat{\mathbf{x}}, \hat{\mathbf{y}}, and \hat{\mathbf{z}}, and the values of the coefficients a_r, a_\theta, and a_z.


Solution.

(a) By the identity \mathbf{A}\cdot\mathbf{B}=|\mathbf{A}||\mathbf{B}|\cos\theta where \theta is the angle between vectors \mathbf{A} and \mathbf{B},

\begin{aligned} \mathbf{A}\cdot\mathbf{B} & = (-4)(5) + (-2)(-3) + (1)(-2) = -16 \\ |\mathbf{A}| & = \sqrt{(-4)^2 + (-2)^2 + (1)^2 } = \sqrt{21} \\ |\mathbf{B}| & = \sqrt{(5)^2 + (-3)^2 + (-2)^2 } =\sqrt{38} \end{aligned}

\begin{aligned} \cos\theta & = \frac{\mathbf{A}\cdot\mathbf{B}}{|\mathbf{A}||\mathbf{B}|} \\ & = \frac{(-16)}{(\sqrt{21})(\sqrt{38})} \\ & = \frac{-16}{\sqrt{798}} \\ \theta & = \arccos \bigg( \frac{-16}{\sqrt{798}} \bigg) \\ & \Bigg[ \textrm{\scriptsize{OR}} \quad \cos^{-1}\bigg( \frac{-16}{\sqrt{798}} \bigg) \Bigg] \end{aligned}

(b) Let the y-axis be denoted by the vector \mathbf{y}=(0,y,0).

Then

\begin{aligned} \mathbf{A}\cdot\mathbf{y} & = (-4)(0) + (-2)(y) + (1)(0) = -2y \\ |\mathbf{A}| & = \sqrt{(-4)^2+(-2)^2+(1)^2} = \sqrt{21}\\ |\mathbf{y}| & = \sqrt{(0)^2+(y)^2+(0)^2} = |y|\\ \end{aligned}

The angle \theta between vector \mathbf{A} and y-axis \mathbf{y} is given by

\begin{aligned} \theta & = \cos^{-1}\bigg( \frac{\mathbf{A}\cdot\mathbf{y}}{|\mathbf{A}||\mathbf{y}|} \bigg) \\ & = \cos^{-1}\bigg(\frac{-2y}{(\sqrt{21})(|y|)}\bigg) \\ & = \cos^{-1}\bigg(\frac{-2}{\sqrt{21}}\cdot \textrm{sgn}(y)\bigg) \\ \end{aligned}

where the sign function \textrm{sgn}(y) is defined below

\textrm{sgn}(y) = \begin{cases} +1 & \textrm{for\enspace}y\geqslant 0 \\ -1 & \textrm{for\enspace}y<0 \end{cases}

Let the yz-plane be denoted by the plane of vectors \mathbf{p}=(0,y,z) for any y,z\in\mathbb{R}.

Then,

\begin{aligned} \mathbf{B}\cdot\mathbf{y} & = (5,-3,-2)\cdot (0,y,z) \\ & = (5)(0)+(-3)(y)+(-2)(z) \\ & = -3y-2z \\ |\mathbf{B}| & = \sqrt{38} \\ |\mathbf{p}| & = \sqrt{y^2+z^2} \\ \theta & = \cos^{-1}\bigg( \frac{\mathbf{B}\cdot\mathbf{p}}{|\mathbf{B}||\mathbf{p}|}  \bigg) \\ & = \cos^{-1}\bigg( \frac{-3y-2z}{\sqrt{(38)(y^2+z^2)}} \bigg) \end{aligned}

Hold on, I smell a rat. Let’s go another way round. Find the angle \phi between vector \mathbf{B} and the x-axis \mathbf{x}=(x,0,0).

As a matter of routine, take dot product on \mathbf{B} and \mathbf{x}.

\begin{aligned} \mathbf{B}\cdot\mathbf{x} & = (5,-3,-2)\cdot (x,0,0) \\ & = (5)(x)+(-3)(0)+(-2)(0) \\ & = 5x \\ |\mathbf{B}| & = \sqrt{38} \\ |\mathbf{x}| & = \sqrt{x^2} = |x| \\ \phi & = \cos^{-1}\bigg( \frac{\mathbf{B}\cdot\mathbf{x}}{|\mathbf{B}||\mathbf{x}|}  \bigg) \\ & = \cos^{-1}\bigg( \frac{5x}{(\sqrt{38})(|x|)}\bigg) \\ & = \cos^{-1}\bigg( \frac{5}{\sqrt{38}}\cdot\textrm{sgn}(x) \bigg) \end{aligned}

The angle that the vector \mathbf{B} makes on the yz-plane is thus \theta =90^\circ - \phi.

Back to the original line of thought. I.e.,

\begin{aligned} \theta & = \cos^{-1}\bigg( \frac{\mathbf{B}\cdot\mathbf{p}}{|\mathbf{B}||\mathbf{p}|}  \bigg) \\ & =  \cos^{-1}\bigg( \frac{-3y-2z}{\sqrt{(38)(y^2+z^2)}} \bigg) \end{aligned}

When the vector \mathbf{B} is projected onto the yz-plane (i.e., \mathbf{p}), the angle of projection \theta is defined the angle between \mathbf{B} and its orthogonal projection \textrm{proj}_{\mathbf{p}}\mathbf{B} on that plane. It is clear that \textrm{proj}_{\mathbf{p}}\mathbf{B}=(0,-3,-2).

The more careful should have I written

\begin{aligned} \theta & = \cos^{-1}\bigg( \frac{\mathbf{B}\cdot\textrm{proj}_{\mathbf{p}}\mathbf{B}}{|\mathbf{B}||\textrm{proj}_{\mathbf{p}}\mathbf{B}|}  \bigg) \\ & = \cos^{-1}\bigg( \frac{(5,-3,-2)\cdot (0,-3,-2)}{(\sqrt{(5)^2+(-3)^2+(-2)^2})(\sqrt{(0)^2+(-3)^2+(-2)^2})} \bigg) \\ & = \cos^{-1}\bigg( \frac{13}{(\sqrt{38})(\sqrt{13})} \bigg) \\ & = \cos^{-1}\bigg(\sqrt{\frac{13}{38}} \bigg) \end{aligned}

As \theta=90^\circ - \phi, or, \theta +\phi =90^\circ

\cos (\theta +\phi )= \cos 90^\circ = 0.

One should check that

\cos\theta\cos\phi - \sin\theta\sin\phi = 0.

By brute force

\begin{aligned} \textrm{LHS} & = \cos\theta\cos\phi - \sin\theta\sin\phi \\ & = \bigg( \frac{\sqrt{13}}{\sqrt{38}}\bigg)\bigg( \frac{5}{\sqrt{38}}\bigg) - \bigg( \frac{\sqrt{(\sqrt{38})^2-(\sqrt{13})^2}}{\sqrt{38}}\bigg) \bigg( \frac{\sqrt{(\sqrt{38})^2-(5)^2}}{\sqrt{38}}\bigg) \\ & = 0 \\ & = \textrm{RHS} \end{aligned}

(c) \mathbf{C}=(-4,0,1)

\begin{aligned} \mathbf{C} \times \mathbf{A} & = \begin{bmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ -4 & 0 & 1 \\ -4 & -2 & 1 \end{bmatrix} \\ & = \begin{pmatrix} 0 & 1 \\ -2 & 1  \end{pmatrix} \hat{\mathbf{x}} - \begin{pmatrix} -4 & 1 \\ -4 & 1  \end{pmatrix} \hat{\mathbf{y}} + \begin{pmatrix} -4 & 0 \\ -4 & -2  \end{pmatrix} \hat{\mathbf{z}} \\ & = 2\,\hat{\mathbf{x}} + 8\,\hat{\mathbf{z}} \\ & = (2,0,8) \end{aligned}

Thus,

\begin{aligned} \hat{\mathbf{n}} & = \frac{\mathbf{C}\times\mathbf{A}}{|\mathbf{C}\times\mathbf{A}|} \\ & = \frac{(2,0,8)}{\sqrt{(2)^2+(0)^2+(8)^2}} \\ & = (\frac{2}{\sqrt{70}} , 0, \frac{8}{\sqrt{70}}) \end{aligned}

(d)

\begin{aligned} \hat{\mathbf{r}} & = \hat{\mathbf{x}}\cos\theta + \hat{\mathbf{y}}\sin\theta \\ \hat{\boldsymbol{\theta}} & = -\hat{\mathbf{x}}\sin\theta + \hat{\mathbf{y}}\cos\theta \\ \hat{\mathbf{z}} & = \hat{\mathbf{z}} \end{aligned}

As

\begin{aligned} \cos\theta & =\displaystyle{\frac{-4}{\sqrt{(-4)^2+(-2)^2}}=\frac{-4}{\sqrt{20}}} \\ \sin\theta & = \displaystyle{\frac{-2}{\sqrt{(-4)^2+(-2)^2}}=\frac{-2}{\sqrt{20}}} \end{aligned}
\begin{aligned} \hat{\mathbf{r}} & = -\frac{2\sqrt{5}}{5}\,\hat{\mathbf{x}} -\frac{\sqrt{5}}{5}\,\hat{\mathbf{y}}\\ \hat{\boldsymbol{\theta}} & = \frac{\sqrt{5}}{5}\,\hat{\mathbf{x}} -\frac{2\sqrt{5}}{5}\,\hat{\mathbf{y}} \\ \hat{\mathbf{z}} & = \hat{\mathbf{z}} \end{aligned}

\therefore \quad \mathbf{A}=2\sqrt{5}\,\hat{\mathbf{r}}+\hat{\mathbf{z}}.

Leave a Reply

Your email address will not be published. Required fields are marked *