202403191813 饔飧

中國人:日出而作,朝飯嘗飽,過中不食,日入而息,是上古先民的生活寫照。

英國人:Breakfast (to break one’s fast) 者,一吞一嚥;lunch (= noon + shench) 者,一啖一啜;supper (to sup/soup) 者,一咀一嚼。水穀精微,以固體難消化、流質易吸收。

法國人:Le déjeuner (= dé- +‎ jeûner) 本與 to break fast 同義;不過我輩晏起,又忌空腹食大餐,故襲以早餐為 le petit déjeuner,午餐為 le déjeuner。(注:petit = little)

202403051417 Revision Paper XIII Q10

To a man walking along a horizontal road at 1.5\,\mathrm{m/s} the rain is coming towards him and appears to be falling at 3.5\,\mathrm{m/s} at an angle of 30^\circ to the vertical. Find, by calculation or drawing, the true speed of the rain and the angle this makes with the vertical.

Extracted from A. Godman & J. F. Talbert. (1973). Additional Mathematics Pure and Applied in SI Units.


Setup.

As always, visualise the scene.

Two observers in different reference frames S and S' can give different descriptions of the same physical event (x,y,z,t). Where something is depends on when you check on it and on the movement of your own reference frame. Time and space are not independent quantities; they are related by relative velocity.

If S' is moving with speed v in the positive x-direction relative to S, then its coordinates in S' are

\begin{aligned} x' & = x-vt \\ y' & = y \\ z' & = z \\ t' & = t \\ \end{aligned}

and if an object has velocity \mathbf{u} in frame S, then velocity \mathbf{u}' of the object in frame S' is

\begin{aligned} u' & = \frac{\mathrm{d}x'(t)}{\mathrm{d}t} \\ & = \frac{\mathrm{d}}{\mathrm{d}t}(x(t)-vt) \\ & = \frac{\mathrm{d}x(t)}{\mathrm{d}t}-v \\ & = u-v \\ \end{aligned}

in magnitude.

Cf. Ming-chang Chen. (2017). NTHU EE211000 Modern Physics.


Roughwork.

Recall that a triangle is uniquely determined by not all but some of its three sides and three angles:

\begin{aligned} \textrm{SSS} & \quad \textrm{(Side-Side-Side)} \\ \textrm{SAS} & \quad \textrm{(Side-Angle-Side)} \\ \textrm{ASA} & \quad \textrm{(Angle-Side-Angle)} \\ \textrm{AAS} & \quad \textrm{(Angle-Angle-Side)} \\ \textrm{RHS} & \quad \textrm{(Right angle-Hypotenus-Side)} \\ \end{aligned}

Hence, provided in part

\begin{aligned} u' & = 3.5 \\ v & = 1.5 \\ \measuredangle (u',v) & = 60^\circ \\ \end{aligned}

we can supply in whole

\begin{aligned} u & = \cdots \\ \measuredangle (v,u) & = \cdots \\ \measuredangle (u,u') & = \cdots \\ \end{aligned}


This problem is not to be attempted.

202403041703 Revision Paper II Q10

A body travels in a straight line but its speed at any time does not exceed 5\,\mathrm{m\,s^{-1}}. If it accelerates and decelerates at 2\,\mathrm{m\,s^{-2}}, find the shortest time needed to cover a distance of 30\,\mathrm{m} from rest to rest.

Extracted from A. Godman & J. F. Talbert. (1973). Additional Mathematics Pure and Applied in SI Units.


Roughwork.

For avoidance of physics is one by mathematical formulation.


\begin{aligned} v & = u+at \\ 5 & = 0 + 2t_1 \\ \textrm{Eq. (1):}\qquad\qquad t_1 & = 2.5\,\mathrm{s} \\ & \\ v & = u+at \\ 0 & = 5-2(t_3-t_2) \\ \textrm{Eq. (2):}\qquad t_3-t_2 & = 2.5\,\mathrm{s} \\ & \\ s & = \frac{((t_2-t_1)+(t_3-0))(v_{\textrm{max}})}{2} \\ 30 & = \frac{(t_2-2.5+t_3)(5)}{2} \\ \textrm{Eq. (3):}\qquad t_2+t_3 & = 14.5\,\mathrm{s} \\ \end{aligned}

What is t_3 then, in unit \textrm{sec}?


This problem is not to be attempted.

202403011713 Revision Paper IV Q8

Ball A (mass 3\,\mathrm{kg}) is travelling due east in a straight line with speed 5\,\mathrm{m\,s^{-1}} when it collides with ball B (mass 4\,\mathrm{kg}) which was at rest. After the collision both balls move east with relative speed 2.5\,\mathrm{m\,s^{-1}}. Find their separate speeds.

Extracted from A. Godman & J. F. Talbert. (1973). Additional Mathematics Pure and Applied in SI Units.


Roughwork.

Take eastward positive.

\begin{aligned} \textrm{CoM:}\qquad p_{\textrm{initial}} & = p_{\textrm{final}} \\ \sum_{i=A}^{B}m_iu_i & = \sum_{i=A}^{B}m_iv_i \\ m_Au_A+m_Bu_B & = m_Av_A+m_Bv_B \\ (3)(5)+(4)(0) & = (3)(v_A)+(4)(v_B) \\ \textrm{Eq. (1):}\qquad\quad 15 & = 3v_A+4v_B \\ \textrm{Eq. (1)':}\qquad\quad v_A & = 5-\frac{4}{3}v_B \\ \end{aligned}

\begin{aligned} \textrm{CoE:}\qquad\textrm{KE}_{\textrm{initial}} & = \textrm{KE}_{\textrm{final}} \\ \sum_{i=A}^{B}\frac{1}{2}m_iu_i^2 & = \sum_{i=A}^{B}\frac{1}{2}m_iv_i^2 \\ m_Au_A^2+m_Bu_B^2 & = m_Av_A^2+m_Bv_B^2 \\ (3)(5)^2 + (4)(0)^2 & = (3)(v_A)^2 + (4)(v_B)^2 \\ \textrm{Eq. (2):}\qquad\qquad 75 & = 3v_A^2 + 4v_B^2 \\ \end{aligned}

\begin{aligned} 75 & = 3\bigg( 5-\frac{4}{3}v_B\bigg)^2 + 4v_B^2 \\ 25 & = \bigg( 25 - \frac{40}{3}v_B + \frac{16}{9}v_B^2\bigg) + \frac{4}{3}v_B^2 \\ 0 & = v_B\bigg( -\frac{40}{3} + \frac{28}{9}v_B \bigg) \\ v_B & = 0\textrm{ \scriptsize{OR} }\frac{30}{7} \\ v_A & = \bigg[ 5-\frac{4}{3}(0)\bigg] \textrm{ \scriptsize{OR} }\bigg[ 5-\frac{4}{3}\bigg(\frac{30}{7}\bigg)\bigg] \\ & = 5\textrm{ \scriptsize{OR} }-\frac{5}{7} \\ \end{aligned}

(v_A,v_B) = \bigg( \displaystyle{-\frac{5}{7} , \frac{30}{7}}\bigg) \qquad \text{}^*\textrm{(5,0) is rejected.}

This contradicts with v_B-2.5=v_A>0. As the law of conservation of momentum is always observed, herein has energy \textrm{\scriptsize{NOT}} been conserved.


This problem is not to be attempted.