202210181552 Solution to 1971-CE-AMATH-I-XX

Show that the straight line x+2y+4=0 touches the curve y^2=4x.


Roughwork.

If there exists some point (a,b) of intersection of the straight line and the curve, we have

\begin{cases} a+2b+4 = 0 \\ b^2 = 4a \\ \end{cases}

Substituting -2b-4 for a in the second equation, we have

\begin{aligned} & b^2 = 4(-2b-4) \\ \Leftrightarrow\quad & b^2 + 8b +16 = 0 \\ \Leftrightarrow\quad & (b+4)^2 = 0 \\ \Leftrightarrow\quad & b = -4\quad\textrm{(rep.)} \\ \Rightarrow\quad & a = -2(-4)-4= 4 \\ \end{aligned}

\begin{cases} a = 4 \\ b = -4 \\ \end{cases}

Such point as (4,-4) exists.

\because The intersection of \begin{cases} L: x+2y+4=0 \\ C: y^2 = 4x \\ \end{cases} is non-empty.

\therefore The straight line touches the curve.

202210141629 Solution to 1976-CE-AMATH-II-XX

By using

\displaystyle{\int_{a}^{b}f(x)\,\mathrm{d}x = \int_{a}^{c}f(x)\,\mathrm{d}x + \int_{c}^{b}f(x)\,\mathrm{d}x}

or otherwise, evaluate

\displaystyle{\int_{0}^{\pi}\cos^{7}x\,\mathrm{d}x}.


Warm-up.

\begin{aligned} f(x) & =\cos^7x \\ f(-x) & = \cos^7(-x) \\ & = \cos^7(x) \\ & = f(x) \\ \end{aligned}

\therefore f(x) is an even function such that

\displaystyle{\int_{-a}^{a}f(x)\,\mathrm{d}x = 2\int_{0}^{a}f(x)\,\mathrm{d}x=2\int_{-a}^{0}f(x)\,\mathrm{d}x}.

Assume f(x+T)=f(x) is a periodic function for some T\in (0,2\pi ].

\begin{aligned} & x\overset{f} \longrightarrow \cos^7x \\ \sim\enspace & x\overset{g}\longrightarrow \cos x\overset{h}\longrightarrow \cos^7x \\ \end{aligned}

where g(x)=\cos x, h(x)=x^7, and f=h\circ g.

g:[0,\pi ]\to [-1,1] by x\mapsto \cos x is one-to-one and onto.

h:[-1,1]\to [-1,1] by x\mapsto x^7 is injective and surjective as well.

Hence f, the composition h\circ g of bijections g and h, is also bijective. Besides f:[0,\pi ]\to [-1,1] is a continuously differentiable function that f(0)=1, f(\frac{\pi}{2}) =0, and f(\pi )=-1.

How do you evaluate the integral below:

\displaystyle{F(\theta )=\int_{0}^{\theta}f(x)\,\mathrm{d}x}

where F is an odd function such that

\begin{aligned} F(0) & = F(2\pi ) = 0 \\ F(\theta ) & = -F(-\theta ) \\ \end{aligned}

The curve of function f is flat at point(s) whose slope f' is zero, i.e.,

\begin{aligned} f'(x) & = 0 \\ \frac{\mathrm{d}}{\mathrm{d}x}(\cos^7x) & = 0 \\ -7\cos^6x\sin x & = 0 \\ x & = 0,\frac{\pi}{2}, \pi \\ \end{aligned}

Roughwork. Show

    Integrating by parts,

    \begin{aligned} \int_{0}^{\pi}\cos^7x\,\mathrm{d}x & = \int_{0}^{\pi}\cos^6x\,\mathrm{d}(\sin x) \\ & = \big[\cos^6x\sin x\big]\big|_{0}^{\pi} - \int_{0}^{\pi}\sin x\,\mathrm{d}(\cos^6x)\\ & = 0 + \int_{0}^{\pi}6\sin^2x\cos^5x\,\mathrm{d}x \\ & = \int_{0}^{\pi}6(1-\cos^2x)\cos^5x\,\mathrm{d}x \\ & = \int_{0}^{\pi}6\cos^5x\,\mathrm{d}x - \int_{0}^{\pi}6\cos^7x\,\mathrm{d}x \\ \int_{0}^{\pi}7\cos^7x\,\mathrm{d}x & = \int_{0}^{\pi}6\cos^5x\,\mathrm{d}x \\ \int_{0}^{\pi}\cos^7x\,\mathrm{d}x & = \frac{6}{7}\int_{0}^{\pi}\cos^5x\,\mathrm{d}x \\ & = \frac{6}{7}\int_{0}^{\pi}\cos^4x\,\mathrm{d}(\sin x) \\ &= \frac{6}{7}\bigg\{ \big[\cos^4x\sin x\big]\big|_{0}^{\pi} - \int_{0}^{\pi}\sin x\,\mathrm{d}(\cos^4x)\bigg\} \\ &= \frac{6}{7}\bigg\{ 0 + \int_{0}^{\pi}4\sin^2 x\cos^3x\,\mathrm{d}x\bigg\} \\ & = \frac{24}{7}\int_{0}^{\pi} (1-\cos^2x)\cos^3x\,\mathrm{d}x \\ \frac{30}{7}\int_{0}^{\pi}\cos^5x\,\mathrm{d}x & = \frac{24}{7} \int_{0}^{\pi}\cos^3x\,\mathrm{d}x \\ \int_{0}^{\pi}\cos^5x\,\mathrm{d}x & = \frac{4}{5}\int_{0}^{\pi}\cos^3x\,\mathrm{d}x \\ \end{aligned}

    \begin{aligned} \int_{0}^{\pi}\cos^7x\,\mathrm{d}x & = \frac{6}{7}\bigg\{ \frac{4}{5}\int_{0}^{\pi}\cos^3x\,\mathrm{d}x \bigg\} \\ & = \frac{24}{35} \int_{0}^{\pi} \cos^2x\,\mathrm{d}(\sin x) \\ & = \frac{24}{35}\bigg\{ \big[ \cos^2x\sin x\big]\big|_{0}^{\pi} - \int_{0}^{\pi}\sin x\,\mathrm{d}(\cos^2x) \bigg\} \\ & = \frac{24}{35} \bigg\{ 0 + \int_{0}^{\pi}2\sin^2x\cos x\,\mathrm{d}x \bigg\} \\ & = \frac{48}{35} \int_{0}^{\pi}(1-\cos^2x)\cos x\,\mathrm{d}x \\ \bigg(\frac{24}{35}+\frac{48}{35}\bigg) \int_{0}^{\pi} \cos^3x\,\mathrm{d}x & = \frac{48}{35}\int_{0}^{\pi}\cos x\,\mathrm{d}x \\ \int_{0}^{\pi} \cos^3x\,\mathrm{d}x & = \frac{2}{3}\int_{0}^{\pi}\cos x\,\mathrm{d}x \\ \int_{0}^{\pi}\cos^7x\,\mathrm{d}x & = \frac{24}{35}\bigg\{ \frac{2}{3}\int_{0}^{\pi}\cos x\,\mathrm{d}x \bigg\} \\ & = \frac{16}{35}\big[ \sin x\big]\big|_{0}^{\pi} \\ & = 0 \\ \end{aligned}

    Solution.

    \begin{aligned} \int_{0}^{\pi}\cos^7x\,\mathrm{d}x & = \int_{0}^{\frac{\pi}{2}}\cos^7x\,\mathrm{d}x + \int_{\frac{\pi}{2}}^{\pi}\cos^7x\,\mathrm{d}x \\ & = \int_{0}^{\frac{\pi}{2}}\cos^7x\,\mathrm{d}x + \int_{0}^{\frac{\pi}{2}}\cos^7(x-\pi /2)\,\mathrm{d}(x-\pi /2) \\ & = \int_{0}^{\frac{\pi}{2}}\cos^7x\,\mathrm{d}x - \int_{0}^{\frac{\pi}{2}}\sin^7x\,\mathrm{d}x \\ & = \int_{0}^{\frac{\pi}{2}}(\cos^7x-\sin^7x)\,\mathrm{d}x \\ \end{aligned}

    The rest is left as an exercise to the reader.

202210141016 Solution to 1975-CE-AMATH-II-XX

In the Figure below, OABC is a square. D and E are the mid-points of AB and BC respectively. Let the vector \overrightarrow{OA} be represented by \mathbf{i} and \overrightarrow{OC} by \mathbf{j}.

(a) Express \overrightarrow{OD} in terms of \mathbf{i} and \mathbf{j}.
(b) Express \overrightarrow{OE} in terms of \mathbf{i} and \mathbf{j}.
(c) Evaluate \displaystyle{\frac{\overrightarrow{OD}\cdot\overrightarrow{OE}}{\left|\overrightarrow{OD}\right|\left|\overrightarrow{OE}\right|}}, where \left|\overrightarrow{OD}\right| and \left|\overrightarrow{OE}\right| are the magnitudes of \overrightarrow{OD} and \overrightarrow{OE} respectively.
(d) Hence calculate \angle DOE.


Notation.

In what follow vectors will be typographically boldfaced, i.e.,

\begin{aligned} \mathbf{OA} & := \overrightarrow{OA} \\ \mathbf{OC} & := \overrightarrow{OC} \\ \mathbf{OD} & := \overrightarrow{OD} \\ \mathbf{OE} & := \overrightarrow{OE} \\ \end{aligned}

etc., in place of an overhead arrow \overrightarrow{[\cdot ]} more than usually handwritten, the direction of which (e.g. \overrightarrow{AB}) is intended an initial point (e.g. A) make to a terminal point (e.g. B).


(a)

\begin{aligned} \mathbf{OD} & = \mathbf{OA} + \mathbf{AD} \\ & = \mathbf{OA} + \frac{1}{2}\mathbf{AB} \\ \dots\enspace\because\enspace & \mathbf{AB}=\mathbf{OC}\enspace\dots \\ & = \mathbf{OA} + \frac{1}{2}\mathbf{OC} \\ & = \mathbf{i} + \frac{1}{2}\mathbf{j} \\ \end{aligned}

(b)

\begin{aligned} \mathbf{OE} & = \mathbf{OC} + \mathbf{CE} \\ & = \mathbf{OC} + \frac{1}{2}\mathbf{CB} \\ \dots\enspace\because\enspace & \mathbf{CB}=\mathbf{OA}\enspace\dots \\ & = \mathbf{OC} + \frac{1}{2}\mathbf{OA} \\ & = \mathbf{j} + \frac{1}{2}\mathbf{i} \\ \end{aligned}

(c) and (d) are not chosen.

202210101009 Exercise 3.9

(a) Prove that the sequence \{ z_n\} converges, and give its limit, when z_n is given by
i. \displaystyle{\frac{1}{n}\mathrm{i}^n},
ii. (1+\mathrm{i})^{-n},
iii. \displaystyle{\frac{n^2+\mathrm{i}n}{n^2+\mathrm{i}}}.
(b) Prove that the sequence \{ z_n\} does not converge when z_n is given by
i. \mathrm{i}^n,
ii. (1+\mathrm{i})^n,
iii. \displaystyle{(-1)^n\frac{n}{n+\mathrm{i}}}.

Extracted from H. A. Priestley. (2003). Introduction to Complex Analysis.


Background.

Definition. (geometric series)
A series of complex number \displaystyle{\sum_{n=0}^{\infty}z_n} is called a geometric series if

\exists\, t\in\mathbb{C}\textrm{ s.t. }z_{n+1}=tz_n\enspace\forall\, n\in\mathbb{N}.

N.b. Such geometric series as z_0\neq 0 is divergent whenever |t|\geqslant 1.

Proposition. (ratio test)
Let \displaystyle{\sum_{n=0}^{\infty}z_n} be a series of complex numbers, z_n\neq 0\enspace\forall\, n\in\mathbb{N}. Define \displaystyle{r_n:=\bigg|\frac{z_{n+1}}{z_n}\bigg|} for n\in\mathbb{N}. Assume that \displaystyle{\lim_{n\to\infty}r_n=r} exists, r\in [0,\infty)\cup \{\infty\}. The series is absolutely convergent if r<1, divergent if r>1, and undetermined if r=1.

Proposition. (root test)
Let \displaystyle{\sum_{n=0}^{\infty}z_n} be a series of complex numbers. For n\geqslant 1 define \rho_n =|z_n|^{\frac{1}{n}}. Assume that \displaystyle{\lim_{n\to\infty} \rho_n :=A} exists, A\in [0,\infty )\cup \{\infty\}. The series is absolutely convergent if A<1, divergent if A>1, and undetermined if A=1.


(a) i.

From \displaystyle{z_n=\frac{1}{n}\mathrm{i}^n} observe that

\displaystyle{z_{n+1}=\bigg(\frac{n}{n+1}\mathrm{i}}\bigg)\cdot z_n

is a geometric series of common ratio t:

\displaystyle{t:=\frac{n}{n+1}\mathrm{i}}}.

\begin{aligned} |t| & =\bigg| \frac{n}{n+1} \mathrm{i}\bigg| \\ & = \sqrt{(0)^2+\bigg(\frac{n}{n+1}\bigg)^2} \\ & = \frac{n}{n+1} < 1\enspace \forall\, n\in\mathbb{N} \\ \end{aligned}

\therefore \{ z_n\} converges to the limit 1.


(a) ii.

\begin{aligned} z_n & = (1+\mathrm{i})^{-n} \\ z_{n+1} & = (1+\mathrm{i})^{-(n+1)} \\ & = (1+\mathrm{i})^{-1}(1+\mathrm{i})^{-n} \\ & = \bigg(\frac{1}{1+\mathrm{i}}\bigg) \cdot z_n \\ t & := \frac{1}{1+\mathrm{i}} \\ & = \frac{1}{1+\mathrm{i}} \cdot \frac{1-\mathrm{i}}{1-\mathrm{i}} \\\ & = \frac{1-\mathrm{i}}{1-\mathrm{i}^2} \\ & = \frac{1-\mathrm{i}}{1-(-1)} \\ & = \frac{1}{2} - \frac{1}{2}\mathrm{i} \\ |t| & = \sqrt{\bigg(\frac{1}{2}\bigg)^2 + \bigg( -\frac{1}{2}\bigg)^2} \\ & = \cdots \\ & = \frac{\sqrt{2}}{2}<1 \\ \end{aligned}

\therefore \{ z_n\} converges to the limit 0.


(a) iii.

\begin{aligned} z_n & = \frac{n^2+\mathrm{i}n}{n^2+\mathrm{i}} \\ z_{n+1} & = \frac{(n+1)^2+\mathrm{i}(n+1)}{(n+1)^2+\mathrm{i}} \\ \frac{z_{n+1}}{z_n} & = \frac{(n+1)^2+\mathrm{i}(n+1)}{(n+1)^2+\mathrm{i}}\bigg/ \frac{n^2+\mathrm{i}n}{n^2+\mathrm{i}} \\ & = \frac{(n+1)^2+\mathrm{i}(n+1)}{(n+1)^2+\mathrm{i}}\cdot \frac{n^2+\mathrm{i}}{n^2+\mathrm{i}n} \\ & =: r_n \\ \end{aligned}

By ratio test or root test for convergence the series being undetermined, we had rather adopt another approach.

\begin{aligned} \frac{n^2+\mathrm{i}n}{n^2+\mathrm{i}} & = \frac{(n^2+\mathrm{i}n)(n^2-\mathrm{i})}{(n^2+\mathrm{i})(n^2-\mathrm{i})} \\ z_n & = \frac{(n^4+n)+\mathrm{i}(n^3-n^2)}{n^4+1} \\ \textrm{Re}\, z_n & = \frac{n^4+n}{n^4+1} \\ \textrm{Im}\, z_n & = \frac{n^3-n^2}{n^4+1} \\ \lim_{n\to\infty} \textrm{Re}\, z_n & = \cdots = 1 \\ \lim_{n\to\infty} \textrm{Im}\, z_n & = \cdots = 0 \\ \end{aligned}

\therefore \{ z_n\} converges to the limit 1.


(b) i., ii., and iii. are left the reader as an exercise.

202210051329 Exercise 3.1

(a) Prove that the following are open sets:
i. \{ z\in\mathbb{C}:|z-1|<|z+\mathrm{i}|\};
ii. \mathbb{C}\backslash [0,1].
(b) Prove that the following are not open:
i. \{ z\in\mathbb{C}:\mathrm{Re}\, z\geqslant 0\};
ii. \{ z\in\mathbb{C}:|z|\leqslant 2,\mathrm{Re}\, z>1\}.

Extracted from H. A. Priestley. (2003). Introduction to Complex Analysis.


Background.

Definition. (open set)
A set S\subseteq \mathbb{C} is open if, given z\in S, there exists r>0 (depending on z) such that \mathrm{D}(z;r)\subseteq S.

Definition. (open disc)
The open disc centre a\in\mathbb{C} and radius r>0 is defined to be

\mathrm{D}(a;r):=\{ z\in\mathbb{C}: |z-a|<r \}.


(a) i.

Warm-up.

\begin{aligned} |z-1| & = |(x+\mathrm{i}y)-1| \\ & = \sqrt{(x-1)^2+(y)^2} \\ |z+\mathrm{i}| & = |(x+\mathrm{i}y)+\mathrm{i}| \\ & = \sqrt{(x)^2+(y+1)^2} \\ \end{aligned}

No, just let r=|z+\mathrm{i}| is done.

(a) ii.

Set-up.

In set notation a complex interval number may be represented in the form

\mathcal{A}=[a,b]+[c,d]\mathrm{i}=\{ x+\mathrm{i}y\, |\, a\leqslant x\leqslant b,c\leqslant y \leqslant d\}.

Extracted from R. Boche. (1966). Complex Interval Arithmetic with Some Applications.

Thus \mathbb{C}\backslash [0,1] is equivalent to

\{z=a+\mathrm{i}b\textrm{ where }a,b\notin [0,1]\},

as shown in the figure below:


Abortive attempt.

Lemma.

Let S\subset X be a non-empty subset and U\subset S. Then U is open in S if and only if U=V\cap S for some V\subset X which is open in X.

Proof. Necessity. \forall\, z\in U,\,\exists\, r>0 s.t. \mathrm{D}_S(z;r)\subset U. Let \displaystyle{V=\bigcup_{z\in U}\mathrm{D}_X(z;r)}. Then U=V\cap S. Note that V is open in X. Sufficiency. \forall\, z\in U\subset V,\,\exists\, r>0 s.t. \mathrm{D}_X(z;r)\subset V. Thus \mathrm{D}_S(z;r)=\mathrm{D}_X(z;r)\cap S\subset V\cap S\subset U.   \blacksquare

Now that U=\mathbb{C}\backslash [0,1], S=\mathbb{C}, and X=\mathbb{C} … quit this circular reasoning of no use.


Make use of the following

Lemma.

The union of any collection of open sets is open.

Proof.

Let \displaystyle{S=\bigcup_{\lambda\in I}S_\lambda} where S_\lambda is open in \mathbb{C} and I any index set. Then \forall\, z\in S, z\in S_\lambda for some \lambda and so \exists\, r>0 s.t. \mathrm{D}(z;r)\subset S_\lambda\subset S.   \blacksquare

Thereby

\mathbb{C}\backslash [0,1]=\mathbb{C}(-\infty ,0)\cup\mathbb{C}(1,\infty)

is open.

QED


(b)

A set S is not open whenever S^0 (/\textrm{int}\, S), the interior of S, falls short of its whole, i.e., S\supset S^0\neq S

For i. and ii. the unbelonging boundaries \partial S‘s to either are \{z\in\mathbb{C}:\textrm{Re }z=0\} and \{z\in\mathbb{C}:|z|=2,\mathrm{Re}\, z>1\}.