202104221542 Homework 2 (Q4)

Evaluate the limit, or explain why the limit fails to exist.

(a) \displaystyle{\lim_{(x,y)\to (0,0),\, x\neq y} \frac{x^2-xy}{\sqrt{x}-\sqrt{y}}};

(b) \displaystyle{\lim_{(x,y)\to (2,0)}\frac{x^2-y^2-4x+4}{x^2+y^2-4x+4}}


Solution.

(a)

\begin{aligned} & \quad \lim_{(x,y)\to (0,0),\, x\neq y} \frac{x^2-xy}{\sqrt{x}-\sqrt{y}} \\ & = \lim_{(x,y)\to (0,0),\, x\neq y} \frac{x(x-y)}{\sqrt{x}-\sqrt{y}} \\ & = \lim_{(x,y)\to (0,0),\, x\neq y} \frac{x(\sqrt{x}+\sqrt{y})(\sqrt{x}-\sqrt{y})}{\sqrt{x}-\sqrt{y}} \\ & = \lim_{(x,y)\to (0,0),\, x\neq y} x(\sqrt{x}+\sqrt{y}) \\ & = (0)\big( \sqrt{(0)} + \sqrt{(0)} \big) \\ & = 0 \end{aligned}

(b)


Roughwork.

\begin{aligned} & \quad \lim_{(x,y)\to (2,0)} \frac{x^2-y^2-4x+4}{x^2+y^2-4x+4} \\ & = \lim_{(x,y)\to (2,0)} \frac{(x-2)^2-y^2}{(x-2)^2+y^2} \\ \end{aligned}


If we take limits along the path (2,y)\to (2,0),

\begin{aligned} & \quad \lim_{(x,y)\to (2,0)}\frac{x^2-y^2-4x+4}{x^2+y^2-4x+4} \\ & = \lim_{(x,y)\to (2,0)} \frac{(x-2)^2-y^2}{(x-2)^2+y^2} \\ & = \lim_{y\to 0\textrm{ along }x=2}\frac{(x-2)^2-y^2}{(x-2)^2+y^2} \\ & = \lim_{y\to 0\textrm{ along }x=2}\frac{\big((2)-2\big)^2-y^2}{\big((2)-2\big)^2+y^2} \\ & = \lim_{y\to 0\textrm{ along }x=2}\frac{-y^2}{y^2} \\ & = -1 \end{aligned}

whereas if we take limits along the path (x,0)\to (2,0),

\begin{aligned} & \quad \lim_{(x,y)\to (2,0)} \frac{(x-2)^2-y^2}{(x-2)^2+y^2} \\ & = \lim_{x\to 2\textrm{ along }y=0}\frac{(x-2)^2-y^2}{(x-2)^2+y^2} \\ & = \lim_{x\to 2\textrm{ along }y=0}\frac{(x-2)^2-(0)^2}{(x-2)^2+(0)^2} \\ & = 1 \end{aligned}

The limit fails to exist because the limiting values vary with the paths of taking the limit \lim_{(x,y)\to (2,0)}.

Leave a Reply

Your email address will not be published. Required fields are marked *