202104162147 Homework 1 (Q2)

The angle a of a triangle ABC is increasing at a rate of 3\,\mathrm{^\circ\, s^{-1}}, the side of AB is increasing at a rate of 1\,\mathrm{cm\, s^{-1}}, and the side of AC is decreasing at a rate of 2\,\mathrm{cm\, s^{-1}}. How fast is the side BC changing when a=30^\circ, AB=10\,\mathrm{cm}, and AC=24\,\mathrm{cm}? Is the length of BC increasing or decreasing?


Solution.

Draw a figure below:


Rephrase the problem.

Given that
\begin{aligned} \frac{\mathrm{d}a}{\mathrm{d}t} & = + 3\,\mathrm{^\circ\, s^{-1}} \\ \frac{\mathrm{d}x}{\mathrm{d}t} & = + 1\,\mathrm{cm\, s^{-1}} \\ \frac{\mathrm{d}y}{\mathrm{d}t} & = -2\,\mathrm{cm\, s^{-1}} \end{aligned}
If a=30^\circ, x=10\,\mathrm{cm}, and y=24\,\mathrm{cm},
then \displaystyle{\frac{\mathrm{d}z}{\mathrm{d}t}=\enspace ?}


By cosine law,

z^2=x^2+y^2-2xy\cos a.

Taking ordinary derivatives w.r.t. time t,

\displaystyle{2z\frac{\mathrm{d}z}{\mathrm{d}t} = 2x\frac{\mathrm{d}x}{\mathrm{d}t} + 2y\frac{\mathrm{d}y}{\mathrm{d}t} + 2xy\sin a\frac{\mathrm{d}a}{\mathrm{d}t} - 2x\cos a\frac{\mathrm{d}y}{\mathrm{d}t} - 2y\cos a\frac{\mathrm{d}x}{\mathrm{d}t}}


\begin{aligned} z & =\sqrt{x^2+y^2-2xy\cos a} \\ & = \sqrt{(10)^2+(24)^2-2(10)(24)\cos 30^\circ} \\ & = 16.1341\qquad (4\,\mathrm{d.p.}) \end{aligned}


Plugging in the value of each,

\displaystyle{2(\cdot\cdot )\frac{\mathrm{d}z}{\mathrm{d}t} = 2(\cdot\cdot )\big(\cdot\cdot \big)+2(\cdot\cdot )\big(\cdot\cdot \big)+2(\cdot\cdot )(\cdot\cdot )\sin (\cdot\cdot )\big(\cdot\cdot \big) - 2(\cdot\cdot )\cos (\cdot\cdot )\big(\cdot\cdot \big) - 2(\cdot\cdot )\cos (\cdot\cdot )\big(\cdot\cdot \big)}

you will know what \displaystyle{\frac{\mathrm{d}z}{\mathrm{d}t}} is.


But now, I intend to treat it with partial derivatives.

Let f(x,y,a) = x^2+y^2-2xy\cos a = z^2.

\begin{aligned} \frac{\mathrm{d}f}{\mathrm{d}t} & = \frac{\partial f}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial f}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}t} + \frac{\partial f}{\partial a}\frac{\mathrm{d}a}{\mathrm{d}t} \\ & = (2x-2y\cos a)\frac{\mathrm{d}x}{\mathrm{d}t} + (2y-2x\cos a)\frac{\mathrm{d}y}{\mathrm{d}t} + 2xy\sin a\frac{\mathrm{d}a}{\mathrm{d}t} \\ \end{aligned}

After \displaystyle{\frac{\mathrm{d}f}{\mathrm{d}t}} is sought, recognise that

\begin{aligned} \frac{\mathrm{d}f}{\mathrm{d}t} & =2z\frac{\mathrm{d}z}{\mathrm{d}t} \\ \frac{\mathrm{d}z}{\mathrm{d}t} & = \bigg(\frac{1}{2z}\bigg)\frac{\mathrm{d}f}{\mathrm{d}t} \end{aligned}

you could have it also.


(to be continued)

Leave a Reply

Your email address will not be published. Required fields are marked *