202105251602 Homework 1 (Q1)

Recall that classical wave in one spatial dimension is described by the wave equation Eq. (1):

\displaystyle{\frac{\partial^2u}{\partial x^2}=\frac{1}{v^2}\frac{\partial^2u}{\partial t^2}}.

(a) Find conditions on the constants a, f, k and \phi so that u=a\cos (2\pi ft+kx+\phi ) is a solution of the Eq. (1).

(b) What are the physical meanings of a, f, k and \phi?

(c) Show that if u_1(x,t) and u_2(x,t) are solutions of Eq. (1), then so is c_1u_1(x,t)+c_2u_2(x,t) where c_1, c_2 are constants. (Mathematically, we say that the solutions form a linear space or vector space.)

(d) Consequently, u=\sum_{i=1}^2a_i\cos (2\pi f_it+k_ix+\phi_i) is a solution of Eq. (1) provided that each of the two terms is also a solution of Eq. (1). What could be said about the frequency of the wave described by this linear-superpositioned solution?


Solution.

(The solution below is based on the manuscript of 2015-2016 PHYS2265 Modern Physics Homework 1 Solution.)

(a)

\begin{aligned} \frac{\partial^2u}{\partial x^2} & = \frac{\partial}{\partial x}\bigg(\frac{\partial u}{\partial x}\bigg) \\ & = \frac{\partial}{\partial x}\bigg(\frac{\partial}{\partial x}\Big( a\cos (2\pi ft+kx+\phi )\Big)\bigg) \\& = \frac{\partial}{\partial x}\Big( -ak\sin (2\pi ft+kx+\phi) \Big) \\ & = -ak^2\cos (2\pi ft+kx+\phi) \\ \frac{\partial^2u}{\partial t^2} & = \frac{\partial}{\partial t}\bigg(\frac{\partial u}{\partial t}\bigg) \\ & = \frac{\partial}{\partial t}\bigg(\frac{\partial}{\partial t}\Big( a\cos (2\pi ft+kx+\phi )\Big)\bigg) \\& = \frac{\partial}{\partial t}\Big( -a(2\pi f)\sin (2\pi ft+kx+\phi) \Big) \\ & = -4a\pi^2f^2\cos (2\pi ft+kx+\phi ) \end{aligned}

As

-ak^2\cos (2\pi ft+kx+\phi )=\displaystyle{-\frac{4a\pi^2f^2}{v^2}\cos (2\pi ft+kx+\phi )},

we have k=\pm \displaystyle{\frac{2\pi f}{v}}.

There are no constraints on a and \phi.

(b)

a: amplitude
f: frequency
k: wave number
\phi: phase shift of the wave at x=0 and t=0

(c)

Set u(x,t)=c_1u_1(x,t)+c_2u_2(x,t).

Condition \textrm{(i)}:\enspace u_1(x,t) and u_2(x,t) are solutions of Eq. (1).

\begin{aligned} \frac{\partial^2u}{\partial x^2} & = c_1\frac{\partial^2u_1}{\partial x^2} + c_2\frac{\partial^2u_2}{\partial x^2} \\ & \stackrel{\textrm{(i)}}{=} \frac{c_1}{v^2}\frac{\partial^2u_1}{\partial t^2} + \frac{c_2}{v^2}\frac{\partial^2u_2}{\partial t^2} \\ & = \frac{1}{v^2}\bigg( c_1\frac{\partial^2u_1}{\partial t^2}+c_2\frac{\partial^2u_2}{\partial t^2} \bigg) \\ \frac{\partial^2u}{\partial t^2} & = c_1\frac{\partial^2u_1}{\partial t^2}+c_2\frac{\partial^2u_2}{\partial t^2}\\ \therefore \enspace & \frac{\partial^2u}{\partial x^2} = \frac{1}{v^2}\frac{\partial^2u}{\partial t^2} \end{aligned}

That u_1(x,t) and u_2(x,t) are solutions of Eq. (1) implies c_1u_1(x,t)+c_2u_2(x,t) is also a solution.

(d) Frequency is not well-defined for linear-superpositioned waves.

202104142106 Notes on Schrödinger equation for the delta-function barrier

The Schrödinger equation for the delta-function barrier reads

\displaystyle{-\frac{\hbar^2}{2m}}\dfrac{\mathrm{d}^2 \varphi}{\mathrm{d}x^2}+\alpha \delta (x)\varphi =E\varphi

It yields both bound states (E<0) and scattering states (E>0). For the time being we consider only scattering states.

For x<0, V=\alpha \delta (x)=0.

The Schrödinger equation reads

\displaystyle{\dfrac{\mathrm{d}^2\varphi}{\mathrm{d}x^2}=-\frac{2mE}{\hbar^2}\varphi=-k^2\varphi},

where \displaystyle{k\stackrel{\textrm{def}}{=} \frac{\sqrt{2mE}}{\hbar}} is real and positive.

The general solution being

\varphi (x)=Ae^{ikx}+Be^{-ikx},

and this time we cannot rule out either term, since neither of them blows up. Similarly, for x>0,

\varphi (x)=Fe^{ikx}+Ge^{-ikx}

The continuity of \varphi (x) at x=0 requires that

F+G=A+B

The derivatives are

\mathrm{d}\varphi /\mathrm{d}x=ik(Fe^{ikx}-Ge^{-ikx}) for x>0;

\mathrm{d}\varphi /\mathrm{d}x=ik(Ae^{ikx}-Be^{-ikx}) for x<0.

Here we define

\displaystyle{\Delta (\mathrm{d}\varphi /\mathrm{d}x)=\frac{\mathrm{d}\varphi}{\mathrm{d}x}\bigg|_{0^+}-\frac{\mathrm{d}\varphi}{\mathrm{d}x}\bigg|_{0^-}}

Hence, \Delta (d\varphi /dx)=ik(F-G-A+B).

By the second boundary condition, we have

\displaystyle{\Delta \bigg(\frac{\mathrm{d}\varphi}{\mathrm{d}x}\bigg)=\frac{2m}{\hbar^2}\lim_{\epsilon \to 0}\int_{-\epsilon}^{+\epsilon}V(x)\varphi (x)\,\mathrm{d}x},

which in turn gives

\displaystyle{\Delta \bigg(\frac{\mathrm{d}\varphi}{\mathrm{d}x}\bigg)=\frac{2m\alpha}{\hbar^2}\varphi (0)=\frac{2m\alpha}{\hbar^2}(A+B)}.

Combining the results of first derivative continuity and second boundary condition, we write

\displaystyle{ik(F-G-A+B)=\frac{2m\alpha}{\hbar^2}(A+B)},

 


Calculations:

\begin{aligned} F-G-A+B & = \frac{2m\alpha}{ik\hbar^2}(A+B) \\ F-G & = A\bigg( 1+\frac{2m\alpha}{ik\hbar^2}\bigg) -B\bigg( 1-\frac{2m\alpha}{ik\hbar}\bigg) \\ F-G & = A(1-2i\beta)-B(1+2i\beta ),\textrm{ where } \displaystyle{\beta \stackrel{\textrm{def}}{=}\frac{m\alpha}{\hbar^2k}}. \end{aligned}


Suppose the wave is coming from the left so that there will be no wave scattering from the right, i.e., G=0.

Recall that F+G=F+0=F=A+B by the continuity condition.


Calculations:

\begin{aligned} A+B & = A(1-2i\beta)-B(1+2i\beta)\\ 0 & = A(-2i\beta)-B(2+2i\beta)\\ A(i\beta) & = -B(1+i\beta)\\ B & = -\frac{i\beta}{1+i\beta}A\\ \end{aligned}

\begin{aligned} F& =A+B\\ & = A-\frac{i\beta}{1+i\beta}A\\ & = \frac{1}{1+i\beta}A\\ \end{aligned}


Reflection coefficient R:

\begin{aligned} R & \equiv \frac{|B|^2}{|A|^2}\\ & = \bigg|-\frac{i\beta}{1+i\beta}\bigg|^2\\ & = \frac{|i\beta|^2}{|1+i\beta|^2}\\ & = \frac{(\sqrt{\beta^2})^2}{(\sqrt{1^2+\beta^2})^2}\\ & = \frac{\beta^2}{1+\beta^2}. \end{aligned}

We could find the transmission coefficient T in two ways:

(1) By the formula \displaystyle{T\equiv \frac{|F|^2}{|A|^2}}; or
(2) By the fact that the sum of reflection coefficient and transmission coefficient has to be unity,

i.e., R+T=1.


Calculations:

By (2):

\begin{aligned} T & = 1-R\\ & = 1-\frac{\beta^2}{1+\beta^2}\\ & = \frac{1}{1+\beta^2} \end{aligned}


Notice that R and T are functions of \beta, hence:

\displaystyle{R=\frac{1}{1+(2\hbar E/m\alpha^2)}},

\displaystyle{T=\frac{1}{1+(m\alpha^2/2\hbar^2E)}}.

Readers should verify this result.

Compare this delta-function barrier with the delta-function trap, we notice that the reflection coefficient and transmission coefficient are each identical respectively in two cases.

202104161839 Homework 1 (Q2)

At time t=0 a particle is represented by the wave function

\Psi (x) = \begin{cases} Ax/a, & \textrm{if }0\leq x\leq a \\ A\big( (x-a)^2+1\big), &\textrm{if }a\leq x\leq 2a \\ A(a^2+1)\displaystyle{\frac{3a-x}{a}},&\textrm{if }2a\leq x\leq 3a\\ 0, & \textrm{otherwise} \end{cases}

where A, x are constants.

(a) Normalize \Psi (that is, find A in terms of a).
(b) Sketch \Psi (x,0) as a function of x.
(c) Where is the particle most likely to be found, at t=0?
(d) What is the probability of finding the particle to the left of a.
(e) What is the expectation value of x?


(a)

\begin{aligned} 1 & = \int_{-\infty}^{+\infty}|\Psi |^2\,\mathrm{d}x \\ & = \int_{0}^{a}\frac{|A|^2x^2}{a^2}\,\mathrm{d}x + \int_{a}^{2a}|A|^2[(x-a)+1]^2\,\mathrm{d}x+\int_{2a}^{3a}|A|^2(a+1)^2\bigg( \frac{3a-x}{a}\bigg)^2\,\mathrm{d}x \\ & = \frac{|A|^2}{a^2}\bigg[\frac{x^3}{3}\bigg]\bigg|^a_{0} + |A|^2\bigg[\frac{\big( (x-a)+1\big)^3}{3}\bigg]\bigg|_{1}^{a+1} + |A|^2\bigg(\frac{a+1}{a}\bigg)^2\bigg[\frac{(x-3a)^3}{3}\bigg]\bigg|_{-a}^{0} \\ & = \frac{|A|^2a}{3} + |A|^2\bigg(\frac{(2)^3}{3} - \frac{(2-a)^3}{3} \bigg) + |A|^2\bigg( \frac{a+1}{a} \bigg)^2\bigg( \frac{(-3a)^3}{3} - \frac{(-4a)^3}{3}  \bigg) \\ \dots \enspace & \textrm{ (to be continued) }\dots \end{aligned}


Roughwork.

Simplifying the second term,

\begin{aligned} &\quad |A|^2\bigg(\frac{(2)^3}{3} - \frac{(2-a)^3}{3} \bigg) \\ & = |A|^2\bigg[ \bigg(\frac{8}{3}\bigg) -\bigg( \frac{8-12a+6a^2-a^3}{3}\bigg) \bigg] \\ & = |A|^2\bigg( \frac{4}{3}a - 2a^2 + \frac{a^3}{3}\bigg) \end{aligned}

Simplifying the third term,

\begin{aligned} & \quad |A|^2\bigg( \frac{a+1}{a} \bigg)^2\bigg( \frac{(-3a)^3}{3} - \frac{(-4a)^3}{3} \bigg) \\ & = |A|^2\bigg( 1+\frac{2}{a}+\frac{1}{a^2}\bigg) \bigg( \frac{-27a^3}{3} + \frac{64a^3}{3} \bigg)\\ & = |A|^2\bigg( 1+\frac{2}{a}+\frac{1}{a^2}\bigg) \bigg( \frac{37a^3}{3}\bigg) \\ & = |A|^2\bigg( \frac{37}{3}a^3+\frac{74}{3}a^2 + \frac{37}{3}a \bigg) \end{aligned}


\begin{aligned} \dots\enspace &\textrm{ (continue) }\dots \\ 1 & = |A|^2 \bigg[ \bigg(  \frac{1}{3} + \frac{4}{3} + \frac{37}{3} \bigg) a + \bigg( -2+\frac{74}{3} \bigg) a^2 + \bigg( \frac{1}{3}+\frac{37}{3} \bigg) a^3 \bigg] \\ 1 & = |A|^2 \bigg( 14a + \frac{68}{3}a^2 + \frac{38}{3}a^3 \bigg) \\ A & = \frac{1}{\sqrt{14a+\frac{68}{3}a^2+\frac{38}{3}a^3}} \end{aligned}


(b)

(c)

at x=2a where |\Psi |^2 attains its maximum value.

(d)

\begin{aligned} P(x\leqslant a) & =\int_{0}^{a}|\Psi |^2\,\mathrm{d}x \\ & = \int_{0}^{a}\bigg|\frac{Ax}{a}\bigg|^2\,\mathrm{d}x \\ & = |A|^2\frac{a^2}{3} \end{aligned}

(e)

\begin{aligned} \langle x\rangle & = \int_{0}^{3a}x|\Psi |^2\,\mathrm{d}x \\ & = |A|^2\bigg( \int_{0}^{a}\frac{x^3}{a^2}\,\mathrm{d}x + \int_{a}^{2a}[(x-a)^2+1]^2x\,\mathrm{d}x + \int_{2a}^{3a}(a^2+1)^2\bigg(\frac{3a-x}{a}\bigg)^2 x\,\mathrm{d}x \bigg) \\ \dots\enspace & \textrm{ (to be continued) }\dots \end{aligned}

202004240406 Homework 1 (Q6)

Derive the Planck function B_\nu.

HINTS: You can make the following steps.

(1) Show that the density of states for photons is given by

g(E)=\displaystyle{\frac{\mathrm{d}N}{\mathrm{d}E}=\frac{8\pi VE^2}{h^3c^3}},

(2) the photon density per unit frequency is given by

\displaystyle{\frac{\mathrm{d}n}{\mathrm{d}\nu}}=\displaystyle{\frac{8\pi \nu^2}{c^3(e^{h\nu /kT+1})}}, and

(3) the definition of the specific intensity B_\nu =I_\nu is the energy flux per unit frequency per unit solid angle.

Note: the energy and momentum of photons are related as

E=h\nu =pc,

the energy flux per unit frequency is given by

h\nu \displaystyle{\frac{\mathrm{d}n}{\mathrm{d}\nu}}c,

and total solid angle for isotropic emission is 4\pi.


Attempts.

In attempting to derive the Planck function, extensive reference was made to the following several sources found on the Internet:

i. G. B. Rybicki & A. P. Lightman. (1979). Radiative Processes in Astrophysics. John Wiley & Sons, Inc.

ii. https://edisciplinas.usp.br/pluginfile.php/48089/course/section/16461/qsp_chapter10-plank(DOT)pdf

iii. https://en.wikipedia(DOT)org/wiki/Planck\%27s_law#Derivation

iv. http://web.phys.ntnu.no/~stovneng/TFY4165_2013/BlackbodyRadiation(DOT)pdf

Here I follow Rybicki and Lightman’s derivation (pp. 20–22, 1979) direct, and have changed only some wordings.


Solution.

The wave vector of the photon of frequency \nu propagating in direction \mathbf{n} is \mathbf{k}=(2\pi /\lambda )\,\mathbf{n}=(2\pi\nu /c)\,\mathbf{n}. For a photon gas in a box of dimension (L_x,L_y,L_z), the number of nodes of the standing wave is n_i=k_iL_i/2\pi for each direction i\in\{ x,y,z\} and for some wave number k_i. For all directions, write the variation of the number of nodes with the wave number

\Delta n_i=\displaystyle{\frac{L_i\Delta k_i}{2\pi}}

The three-dimensional wave vector element \Delta k_x\Delta k_y\Delta k_z\equiv \mathrm{d}^3k has the number of states to be

\Delta N=\Delta n_x\Delta n_y\Delta n_z=\displaystyle{\frac{L_xL_yL_z\,\mathrm{d}^3k}{(2\pi )^3}}

By the fact that L_xL_yL_z=V is the volume of the box and the fact that photons have two independent polarizations (i.e., two states per wave vector \mathbf{k}), for each 3D-wave vector, the number of states for every unit volume is

\displaystyle{\frac{\Delta N}{V\,\mathrm{d}^3k}}=2/(2\pi )^3.

Using solid angle as in spherical coordinates, rewrite

\mathrm{d}^3k=k^2\,\mathrm{d}k\,\mathrm{d}\Omega =\displaystyle{\frac{(2\pi )^3\nu^2\,\mathrm{d}\nu\,\mathrm{d}\Omega}{c^3}}.

Then, the density of states, i.e., the number of states per solid angle per volume per frequency, is given by

\rho_s\stackrel{\textrm{def}}{=}\displaystyle{\frac{\mathrm{d}N}{\mathrm{d}\Omega\,\mathrm{d}V\,\mathrm{d}\nu}}=\displaystyle{\frac{2\nu^2}{c^3}}.

As each state of n photons each of energy h\nu is of energy E_n=nh\nu, and according to statistical mechanics the probability of a state of energy E_n is proportional to \mathrm{exp}(-\beta E_n) (where \beta =1/kT and k=\textrm{ the Boltzmann's constant}), the average energy of each state is

\overline{E}=\displaystyle{\frac{\sum_{n=0}^\infty E_n\mathrm{exp}(-\beta E_n)}{\sum_{n=0}^\infty \mathrm{exp}(-\beta E_n)}}=-\displaystyle{\frac{\mathrm{\partial}}{\mathrm{\partial}\beta}\ln \bigg( \sum_{n=0}^\infty \mathrm{exp}(-\beta E_n)\bigg)}.

Recall the formula for the sum of a geometric series:

\displaystyle{\sum_{n=0}^\infty}\mathrm{exp}(-\beta E_n)=\displaystyle{\sum_{n=0}^\infty}\mathrm{exp}(-nh\nu\beta )=(1-\mathrm{exp}(-\beta h\nu ))^{-1},

one has therefore the result (in Bose-Einstein statistics)

\overline{E}=\displaystyle{\frac{h\nu\,\mathrm{exp}(-\beta h\nu )}{1-\mathrm{exp}(-\beta h\nu )}=\frac{h\nu}{\mathrm{exp}(h\nu /kT)-1}}.

where it can be seen that the occupation number

n_\nu =\bigg[ \mathrm{exp}\bigg( \displaystyle{\frac{h\nu}{kT}}\bigg) -1\bigg]^{-1}

means the average number of photons in some frequency \nu, as one energy h\nu corresponds to one frequency \nu.

The energy per solid angle per volume per frequency is the product of i. \overline{E}, the average energy of each state, and ii. \rho_s, the density of states.

I.e., \overline{E}\cdot \rho_s = \bigg( \displaystyle{\frac{2\nu^2}{c^3}}\bigg) \displaystyle{\frac{h\nu}{\mathrm{exp}(h\nu /kT)-1}}

Define the specific energy density u_\nu the energy per unit volume per unit frequency range. Then the energy density per unit solid angle can be expressed as

\begin{aligned} u_\nu (\Omega ) & =\displaystyle{\frac{\mathrm{d}E}{\mathrm{d}V\,\mathrm{d}\Omega\,\mathrm{d}\nu}} \\ \dots \textrm{arranging } & \textrm{and equating the previous two equations}\dots \\ u_\nu (\Omega )\,\mathrm{d}V\,\mathrm{d}\nu\,\mathrm{d}\Omega & =\bigg( \displaystyle{\frac{2\nu^2}{c^3}}\bigg) \displaystyle{\frac{h\nu}{\mathrm{exp}(h\nu /kT)-1}}\,\mathrm{d}V\,\mathrm{d}\nu\,\mathrm{d}\Omega \\ \dots \textrm{comparing} & \dots \\ u_\nu (\Omega ) & = \bigg( \displaystyle{\frac{2\nu^2}{c^3}}\bigg) \displaystyle{\frac{h\nu}{\mathrm{exp}(h\nu /kT)-1}} \end{aligned}

Observe that the specific energy density u_\nu and the specific intensity (or brightness) I_\nu are related by

u_\nu (\Omega )=\displaystyle{\frac{I_\nu}{c}}.

Now that the specific intensity, I_\nu, is the same as the source function (of specific emission mechanism), B_\nu.
The frequency distribution is said to be a blackbody form, i.e.,

The Planck function is expressed as

\boxed{I_\nu =B_\nu (T)=\displaystyle{\frac{2h\nu^3}{c^2}}\bigg[ \mathrm{exp}\bigg( \displaystyle{\frac{h\nu}{kT}} \bigg) -1\bigg]^{-1}}

(Units: \mathrm{erg\cdot s^{-1}\cdot Hz^{-1}\cdot cm^{-2}\cdot ster^{-1}})

201907260745 Homework 1 (Q1)

Consider a probability density of the Gaussian distribution

|\Psi |^2=\rho (x)=Ae^{-\lambda(x-a)^2}

where A, a, and \lambda are constants.

You probably wish to know \displaystyle{\int_{-\infty}^{+\infty}}e^{-u^2}\mathrm{d}u=\sqrt{\pi}.

  1. Determine A according to the normalizing rules.
  2. Find \langle x\rangle, \langle x^2\rangle, and \sigma, the standard deviation of x.
  3. Sketch the graph of \rho (x).

Solution:

  1. Roughwork.

    \begin{aligned}1 & = \int_{-\infty}^{+\infty} |\Psi |^2 \mathrm{d}x \\1& = \int_{-\infty}^{+\infty} Ae^{-\lambda (x-a)^2}\mathrm{d}x \\\frac{1}{A} & = \int_{-\infty}^{+\infty}  e^{-\big(\lambda^{\frac{1}{2}}(x-a)\big)^2} \mathrm{d}x \\\dots & \Bigg( \because \enspace \frac{\mathrm{d}\big( \lambda^{\frac{1}{2}}(x-a) \big)}{\mathrm{d}x} = \sqrt{\lambda} \Bigg) \dots \\\frac{1}{A} & = \frac{1}{\sqrt{\lambda}} \int_{-\infty}^{+\infty}  e^{-\big(\lambda^{\frac{1}{2}}(x-a)\big)^2} \mathrm{d}\big( \lambda^{\frac{1}{2}}(x-a) \big) \\\frac{1}{A} & =\sqrt{\frac{\pi}{\lambda}} \\A & = \sqrt{\frac{\lambda}{\pi}}\end{aligned}

  2. Recall \langle x\rangle = \displaystyle{\int_{-\infty}^{+\infty}}x\rho (x)\,\mathrm{d}x, Eq. (1.17) in Griffith's Introduction to Quantum Mechanics

    First,

    \begin{aligned} \langle x\rangle & = A\int_{-\infty}^{+\infty} xe^{-\lambda (x-a)^2}\mathrm{d}x \\ & = A\int_{-\infty}^{+\infty} (u+a)e^{-\lambda u^2}\mathrm{d}u \\ & = A \int_{-\infty}^{+\infty} u\,\mathrm{d}u + Aa\int_{-\infty}^{+\infty}e^{-\lambda u^2}\,\mathrm{d}u \\ & = 0+Aa\sqrt{\frac{\pi}{\lambda}} \\ & = a \end{aligned}


    The section below sets a bad example of computation, the second equality sign being wishful thinking, and what follows thence is incorrect.

    \begin{aligned} \langle x^2\rangle & = A\int_{-\infty}^{+\infty} x^2e^{-\lambda (x-a)^2}\mathrm{d}x \\ & = A \int_{-\infty}^{+\infty} x^2e^{-\lambda x^2}\mathrm{d}x + A \int_{-\infty}^{+\infty} x^2e^{2\lambda ax}\mathrm{d}x + A \int_{-\infty}^{+\infty} x^2e^{-\lambda a^2}\mathrm{d}x \end{aligned}
    Recall the formula for integration by parts is \int uv'\mathrm{d}x =uv-\int vu'\mathrm{d}x, or, \displaystyle{\int u\bigg( \frac{\mathrm{d}v}{\mathrm{d}x}\bigg) \mathrm{d}x} =uv-\displaystyle{\int v\bigg( \frac{\mathrm{d}u}{\mathrm{d}x} \bigg) \mathrm{d}x}.

Evaluate term-by-term, the first term is

\begin{aligned} &\quad A\int_{-\infty}^{+\infty} x^2e^{-\lambda x^2}\,\mathrm{d}x\\ & = \frac{A}{2} \int_{-\infty}^{+\infty} xe^{-\lambda x^2}\,\mathrm{d}(x^2) \\ & =\frac{A}{2} \Bigg\{ \bigg[ \frac{-xe^{-\lambda x^2}}{\lambda}\bigg]_{-\infty}^{+\infty} -\int_{-\infty}^{+\infty} \frac{-e^{-\lambda x^2}}{\lambda}\,\mathrm{d}(x^2)  \Bigg\} \\ \dots & \Bigg( \quad \mathrm{d}(\sqrt{\lambda}x^2) = \frac{1}{2\sqrt{\lambda}}\,\mathrm{d}(x^2) \quad \Bigg) \dots \\ & =\frac{A}{2} \Bigg\{ \bigg[ \frac{-xe^{-\lambda x^2}}{\lambda}\bigg]_{-\infty}^{+\infty} +\frac{2\sqrt{\lambda}}{\lambda}\int_{-\infty}^{+\infty}e^{-(\sqrt{\lambda} x)^2} \mathrm{d}(\sqrt{\lambda}x^2) \Bigg\} \\ & = \frac{A}{2} \bigg( 0+2\sqrt{\frac{\pi}{\lambda}}\bigg) \\ & = \frac{\sqrt{\frac{\lambda}{\pi}}}{2} \bigg( 2\sqrt{\frac{\pi}{\lambda}}\bigg) \\ & = 1 \end{aligned}

The terrible blunder ends here.


Correction.

\begin{aligned} \langle x^2 \rangle & = \int_{-\infty}^{+\infty} x^2Ae^{-\lambda (x-a)^2}\mathrm{d}x \\ & = A\int_{-\infty}^{+\infty} (u+a)^2 e^{\lambda u^2}\mathrm{d}u \\ & = A\int_{-\infty}^{+\infty} u^2e^{-\lambda u^2}\mathrm{d}u + 2Aa\int_{-\infty}^{+\infty} ue^{-\lambda u^2}\mathrm{d}u + Aa^2\int_{-\infty}^{+\infty}e^{-\lambda u^2}\mathrm{d}u \end{aligned}

Step back to look closer, the third term is the easiest to compute:

\begin{aligned} & \quad Aa^2\int_{-\infty}^{+\infty}e^{-\lambda u^2}\mathrm{d}u \\ & = \frac{Aa^2}{\sqrt{\lambda}}\int_{-\infty}^{+\infty}e^{-(\sqrt{\lambda}u)^2}\mathrm{d}(\sqrt{\lambda}u) \\ & =Aa^2\sqrt{\frac{\pi}{\lambda}}\\ & = \sqrt{\frac{\lambda}{\pi}} a^2\sqrt{\frac{\pi}{\lambda}}\\ & = a^2 \end{aligned}

The first two terms might need to be evaluated using integration by parts. On the other hand, from the angle of parity, in the second term

2Aa\displaystyle{\int_{-\infty}^{+\infty}} f(u)\,\mathrm{d}u

where f(u)\stackrel{\mathrm{def}}{=}ue^{-\lambda u^2}

f(-u)=(-u)e^{-\lambda(-u)^2}=-f(u)

is an odd function. The definite integral upon evaluation will be nought:

2Aa\displaystyle{\int_{-\infty}^{+\infty}} ue^{-\lambda u^2}\,\mathrm{d}u \equiv 0.

The first term can be checked

A \displaystyle{\int}g(u)\,\mathrm{d}u

where g(u) \stackrel{\mathrm{def}}{=}u^2e^{-\lambda u^2}

that g(-u)=(-u)^2e^{-\lambda (-u)^2}=g(u) is an even function.

Upon evaluation the definite integral will have the property that

A \displaystyle{\int_{-\infty}^{+\infty}}u^2e^{-\lambda u^2}\,\mathrm{d}u = 2A \displaystyle{\int_{0}^{+\infty}}u^2e^{-\lambda u^2}\,\mathrm{d}u,

though it seems not useful here. Doing integration by parts,

\begin{aligned} & \quad A \displaystyle{\int_{-\infty}^{+\infty}}u^2e^{-\lambda u^2}\mathrm{d}u \\ & = \frac{A}{\sqrt{\lambda}} \int_{-\infty}^{+\infty} u^2e^{-(\sqrt{\lambda}u)^2}\mathrm{d}(\sqrt{\lambda}u) \\ & = \frac{A}{\sqrt{\lambda}} \Bigg\{ \bigg[ \frac{u^2e^{-(\sqrt{\lambda}u)^2}}{-2(\sqrt{\lambda}u)} \bigg]\bigg|_{-\infty}^{+\infty} -\int_{-\infty}^{+\infty}  \frac{e^{-(\sqrt{\lambda}u)^2}}{-2(\sqrt{\lambda}u)} \Big( \frac{2u}{\sqrt{\lambda}} \Big) \mathrm{d}(\sqrt{\lambda}u) \Bigg\} \\ & = \frac{A}{\sqrt{\lambda}} \Bigg\{ 0+ \frac{1}{\lambda}\int_{-\infty}^{+\infty}  e^{-(\sqrt{\lambda}u)^2} \mathrm{d}(\sqrt{\lambda}u) \Bigg\} \\ & = A\frac{1}{\sqrt{\lambda}}\frac{1}{\lambda}\sqrt{\pi} \\ & = \sqrt{\frac{\lambda}{\pi}} \frac{1}{\sqrt{\lambda}}\frac{1}{\lambda}\sqrt{\pi} \\ & = \frac{1}{\lambda} \end{aligned}

Thus \langle x^2\rangle = \frac{1}{\lambda} + a^2

As \sigma^2=\langle x^2\rangle -\langle x\rangle^2,

\sigma^2 = \frac{1}{\lambda} + a^2 - a^2 = \frac{1}{\lambda}.