202402071059 Solution to 1980-CE-PHY-II-16

A light ray passes through a spherical air bubble in water. Which of the following represents the path of the emergent ray?

A. P
B. Q
C. R
D. S


Roughwork.

Refractive (/refraction) index of a pure substance, with some exceptions, is proportional to its density; and of a mixture of substances, as a rule, to its mass concentration.

Thus water, higher in density than air, should have a larger refractive index than air:

n_{\textrm{water}}>n_{\textrm{air}};

alternatively, as light travels in air faster than in water, from

\displaystyle{v=\frac{c}{n}},

it can be seen also.

Let \theta_{1} and \theta_{2} be the angle of incidence and of refraction when light is refracted through the first interface; and \theta_{2} and \theta_{3}, when through the second interface.

Assuming WLOG n_1\geqslant n_2 and noting \sin \theta \geqslant 0 (non-negative) for \theta\in \big[ 0,\frac{\pi}{2}\big]. By Snell’s Law, write

\begin{aligned} n_1\sin\theta_1 & = n_2\sin\theta_2 \\ \frac{\sin\theta_1}{\sin\theta_2} & = \frac{n_2}{n_1}\leqslant 1 \\ \sin\theta_1 & \leqslant \sin\theta_2 \\ \theta_1 & \leqslant \theta_2 \\ \end{aligned}

\therefore \quad n_1\geqslant n_2\Longrightarrow \theta_2\geqslant \theta_1

\therefore\quad n_{\textrm{water}}>n_{\textrm{air}}\Longrightarrow \theta_{\textrm{air}}>\theta_{\textrm{water}}

Answer. Path P.

Reverse the direction of incidence and emergence:

Light ray along path: P bends away from and then towards the normal; Q bends towards the normal once and again; R bends away from the normal once and again; S bends towards and then away from the normal. Wits have it that Q and R are unlikely. So we turn our attention to light rays P and S.

Fussy enough, path P is symmetric with respect to straight line L_P; but there across path S is no line of symmetry were it to be L_S.


This problem is not to be attempted.

202312201537 Solution to 1980-CE-PHY-II-13

6\times 10^{-3}\,\mathrm{m^3} of a gas is contained in a vessel at 91^\circ\mathrm{C} and a pressure of 4\times 10^5\,\mathrm{Pa}. If the density of the gas at s.t.p. (0^\circ\mathrm{C} and 10^5\,\mathrm{Pa}) is 1.2\,\mathrm{kg\, m^{-3}}, what is the mass of the gas?

A. 7.2\,\mathrm{g}
B. 14.4\,\mathrm{g}
C. 21.6\,\mathrm{g}
D. 28.8\,\mathrm{g}

Official answer: C


Roughwork.

\textrm{\textbf{\scriptsize{CASE I}}} (closed vessel)

Assumed a closed vessel, its volume V=\textrm{Const.} a constant. Then, that 6\times 10^{-3}\,\mathrm{m^3} of gas fully occupied the closed vessel, implies that the volume of the vessel is also

V=6\times 10^{-3}\,\mathrm{m^3}.

Hence may we write

\begin{aligned} \textrm{density }(\rho ) & = \frac{\textrm{mass }(m)}{\textrm{volume }(V)} \\ m & = \rho V \\ & = (1.2\,\mathrm{kg\,m^{-3}})(6\times 10^{-3}\,\mathrm{m^3}) \\ & = 7.2\,\mathrm{g} \\ \end{aligned}

And we get option A, which is different from the official answer C. Hence, we need to look into

\textrm{\textbf{\scriptsize{CASE II}}} (open vessel)

We set up the background below.

******************

1. Ideal gas law:

An ideal gas satisfies the general gas equation

pV=nRT

where p, V, n, R, and T are the pressure, the volume, the amount of substance (/number of moles), the ideal (/universal) gas constant, and the temperature of the gas.

2. Conversion of scales of temperature:

x\,^\circ\mathrm{C} \approx (x+273)\,\mathrm{K}

3. Relationship between chemical amount (/number of moles) n, total mass m, and molar mass M, of a substance.

\displaystyle{n=\frac{m}{M}}

Note that total mass m and number of moles n are extensive (/extrinsic) properties; whereas molar mass M is an intensive (/intrinsic) property.

******************

At the start t=t_0,

\begin{aligned} p(t_0) & = 4\times 10^5\,\mathrm{Pa} \\ V(t_0) & = 6\times 10^{-3}\,\mathrm{m^3} \\ T(t_0) & = 364\,\mathrm{K} \\ R & = 8.31\mathrm{m^3\,Pa\,K^{-1}\,mol^{-1}} \\ \end{aligned}

substituting,

\begin{aligned} p(t_0)V(t_0) & = n(t_0)RT(t_0) \\ (4\times 10^5)(6\times 10^{-3}) & = n(t_0)(8.31)(364) \\ n(t_0) & = 0.7722\,\mathrm{mol}\quad\mathrm{(4\, s.f.)}\\ \end{aligned}

at some point later t=t_{1} the gas in standard temperature and pressure (s.t.p.),

\begin{aligned} p(t_1) & = 10^5\,\mathrm{Pa} \\ V(t_1) & = 6\times 10^{-3}\,\mathrm{m^3} \\ T(t_1) & = 273\,\mathrm{K} \\ R & = 8.31\mathrm{m^3\,Pa\,K^{-1}\,mol^{-1}} \\ \end{aligned}

substituting,

\begin{aligned} p(t_1)V(t_1) & = n(t_1)RT(t_1) \\ (10^5)(6\times 10^{-3}) & = n(t_1)(8.31)(273) \\ n(t_1) & = 0.2645\,\mathrm{mol}\quad\mathrm{(4\, s.f.)}\\ \end{aligned}

From n(t_1)<n(t_0), it can be inferred that some portion of the gas was leaking from the open vessel to the atmosphere throughout the experiment.

\begin{aligned} \frac{m(t_1)}{n(t_1)} & = \frac{m(t_0)}{n(t_0)} = M \\ m(t_1) & = \bigg(\frac{n(t_1)}{n(t_0)}\bigg) m(t_0) \\ & = \bigg(\frac{0.2645}{0.7722}\bigg) m(t_0) \\ m(t_1) & = 0.3425m(t_0) \\ \end{aligned}

Provided \rho (t_1)=1.2\,\mathrm{kg\,m^{-3}}, we know

\begin{aligned} \rho (t_1) & = \frac{m(t_1)}{V(t_1)} \\ \rho (t_1) & = \frac{Mn(t_1)}{V(t_1)} \\ 1.2 & = \frac{0.2645M}{6\times 10^{-3}} \\ M & = 0.0272212\,\mathrm{kg\,mol^{-1}}\\ \end{aligned}

Hence

\begin{aligned} m(t_1) & =Mn(t_1) \\ & = (0.0272212)(0.2645) \\ & = 0.0072000074\,\mathrm{kg} \\ & = 7.2\,\mathrm{g} \\ \end{aligned}

And we get option A again, which is far from the official answer C.


Neither \textrm{\textbf{\scriptsize{CASE I}}} nor \textrm{\textbf{\scriptsize{CASE II}}} gives option C; have I actually made a circular argument?

Circular reasoning is a logical fallacy in which the reasoner begins with what they are trying to end with.

Wikipedia on Circular reasoning

Have I really?


No, just that you do so in the way than intended.

202308311431 Solution to 2007-AL-PHY-IIA-9

A diver at a depth of d below the water surface looks up and finds that the sky appears to be within a circle of radius r. Which of the following correctly gives the expression for the critical angle?

A. \tan c=\displaystyle{\frac{r}{d}}
B. \sin c=\displaystyle{\frac{r}{d}}
C. \tan c=\displaystyle{\frac{d}{r}}
D. \sin c=\displaystyle{\frac{d}{r}}


Background.

The critical angle is the smallest angle of incidence that yields total reflection, or equivalently the largest angle for which a refracted ray exists.

Wikipedia on Critical angle (optics)

The light travelling from air to water cannot suffer total internal reflection because for total internal reflection, the essential condition is that light should travel from a denser medium to a rarer medium with incidence angle more than the critical angle.

Toppr on Total internal reflection


Roughwork. (making a short story long)

Subscripts \text{}_a and \text{}_w stand for air and water respectively.

\begin{aligned} n_w\sin \theta_w & = n_a\sin\theta_a \\ \textrm{Eq. (1):\qquad }\frac{n_w}{n_a} & = \frac{\sin\theta_a}{\sin\theta_w}} \\ \frac{\mathrm{d}}{\mathrm{d}t}\bigg( \frac{n_w}{n_a} \bigg) & = \frac{\mathrm{d}}{\mathrm{d}t}\bigg( \frac{\sin\theta_a}{\sin\theta_w}\bigg) \\ 0 & = \frac{\dot{\theta}_a\sin\theta_w\cos\theta_a-\dot{\theta}_w\sin\theta_a\cos\theta_w}{\sin^2\theta_w} \\ \textrm{Eq. (2):\qquad }\frac{\dot{\theta}_a}{\dot{\theta}_w} & = \frac{\tan\theta_a}{\tan\theta_w}=\textrm{non-constant}\\ \end{aligned}

At some height h above the water surface, where \theta_a is the angle of refraction:

\begin{aligned} \textrm{Eq. (3):\qquad }\tan\theta_a & = \frac{r_a}{h} \\ \textrm{where\qquad }\theta_a & \in [0,90^\circ] \\ \textrm{and \qquad }h & = \textrm{Const.}\in [0,\infty ) \\ r_a & = r_a(\theta_a) \in [0,\infty )\\ \end{aligned}

To some depth d beneath the water surface, where \theta_w is the angle of incidence:

\begin{aligned} \textrm{Eq. (4):\qquad }\tan\theta_w & = \frac{r_w}{d} \\ \textrm{where\qquad }\theta_w & \in [0,90^\circ] \\ \textrm{and \qquad }d & = \textrm{Const.}\in [0,\infty ) \\ r_w & = r_w(\theta_w ) \in [0,\infty ) \\ \end{aligned}

Differentiating \textrm{Eq. (3)} and \textrm{Eq. (4)}:

\begin{aligned} \textrm{Eq. (3)':\qquad }h\dot{\theta}_a\sec^2\theta_a & = \dot{r}_a \\ \dot{\theta}_a & = \frac{\dot{r}_a}{h\sec^2\theta_a} \\ \end{aligned}

\begin{aligned} \textrm{Eq. (4)':\qquad }d\dot{\theta}_w\sec^2\theta_w & = \dot{r}_w \\ \dot{\theta}_w & = \frac{\dot{r}_w}{d\sec^2\theta_w} \\ \end{aligned}

Dividing \textrm{Eq. (3)'} by \textrm{Eq. (4)'}:

\textrm{Eq. (5):\qquad }\displaystyle{\frac{\dot{\theta}_a}{\dot{\theta}_w} =\bigg(\frac{\dot{r}_a}{\dot{r}_w}\bigg) \bigg(\frac{d}{h}\bigg)\bigg(\frac{\sec^2\theta_w}{\sec^2\theta_a}\bigg)}

Equating \textrm{Eq. (2)} and \textrm{Eq. (5)}:

\begin{aligned} \textrm{Eq. (6):\qquad }\frac{\tan\theta_a}{\tan\theta_w} & =\bigg(\frac{\dot{r}_a}{\dot{r}_w}\bigg) \bigg(\frac{d}{h}\bigg)\bigg(\frac{\sec^2\theta_w}{\sec^2\theta_a}\bigg) \\ \frac{\tan\theta_a}{\tan\theta_w} & = \frac{(r_a/h)'}{(r_w/d)'}\bigg(\frac{\sec\theta_w}{\sec\theta_a}\bigg)^2\\ \frac{\tan\theta_a}{\tan\theta_w} & = \frac{(\tan\theta_a)'}{(\tan\theta_w)'}\bigg(\frac{\sec\theta_w}{\sec\theta_a}\bigg)^2\\ \frac{\tan\theta_a}{\tan\theta_w} & = \bigg(\frac{\dot{\theta}_a}{\dot{\theta}_w}\bigg)\bigg(\frac{\sec\theta_a}{\sec\theta_w}\bigg)^2\bigg(\frac{\sec\theta_w}{\sec\theta_a}\bigg)^2=\frac{\dot{\theta}_a}{\dot{\theta}_w}\\ \end{aligned}

This \textrm{Eq. (6)} is redundant as it is the same as \textrm{Eq. (2)}. Never mind. But rewrite \textrm{Eq. (6)} (/\textrm{Eq. (2)}) as follows:

\begin{aligned} \dot{\theta}_w\cot\theta_w & = \dot{\theta}_a\cot\theta_a \\ \frac{\mathrm{d}}{\mathrm{d}t}\big(\ln |\sin \theta_w|\big) & = \frac{\mathrm{d}}{\mathrm{d}t}\big(\ln |\sin \theta_a|\big) \\ \ln|\sin\theta_w| & = \ln|\sin\theta_a| \\ \theta_w & = k\pi -\theta_a \qquad (k\in\mathbb{Z})\\ \textrm{and}\qquad \theta_a & \geq \theta_w \\ \end{aligned}

Note that refractive index for air is (approximately) n_a=1,

\begin{aligned} \textrm{Eq. (7):\qquad }\frac{\sin\theta_a}{\sin\theta_w} & =n_w \\ \sin\theta_a & = n_w \sin\theta_w \\ \sin\theta_a & = n_w\sin (90^\circ-\theta_a) \\ \sin\theta_a & = n_w\cos\theta_a \\ \textrm{Eq. (7)':\qquad }n_w & =\tan\theta_a\\ \sin (90^\circ -\theta_w) & = n_w\sin\theta_w \\ \cos\theta_w & = n_w\sin\theta_w \\ \textrm{Eq. (7)'':\qquad }n_w & = \frac{1}{\tan\theta_w}} \\ \end{aligned}

Equating \textrm{Eq. (7)'} and \textrm{Eq. (7)''}:

\begin{aligned} \tan\theta_a & = \frac{1}{\tan\theta_w} \\ \tan\theta_a\tan\theta_w & = 1 \\ \textrm{Eq. (8):\qquad }\tan (90^\circ -\theta_w)\tan\theta_w & = 1 \\ \end{aligned}

Taking limit on \textrm{Eq. (8)},

\begin{aligned} \Big(\lim_{\theta_w\to c}\tan (90^\circ -\theta_w)\Big)\Big(\lim_{\theta_w\to c}\tan\theta_w\Big) & =1 \\ (\cot c)\bigg(\frac{r}{d}\bigg) & = 1 \\ \tan c & =\frac{r}{d} \\ \end{aligned}

And the answer is A.

202307241011 Solution to 2023-DSE-PHY-IA-25

Two cells of negligible internal resistance are connected to two resistors as shown.


Roughwork.

Label the nodes a, b, c, and d:

Identify potential differences \Delta V_{ab}, \Delta V_{cd}, \Delta V_{ac}, and \Delta V_{bd}:

Lemma. (Kirchhoff’s 2nd law (/voltage law/loop rule))

The directed sum of the potential differences (voltages) around any closed loop is zero.

Wikipedia on Kirchhoff’s circuit laws

\begin{aligned} \Delta V_{ab}+\Delta V_{bd}+\Delta V_{dc}+\Delta V_{ca} & = 0 \\ (3)+((-I)(1))+(-(1.5))+(-(I)(2)) & = 0 \\ I & = +0.5\,\mathrm{A} \\ \end{aligned}


This problem is not to be attempted.

202301130941 Solution to 2014-IBHL-PHY-I-5

Two blocks of weight 5\,\mathrm{N} and 2\,\mathrm{N} are attached to two ropes, \textrm{X} and \textrm{Y}.

The blocks hang vertically. The mass of the ropes is negligible. What is the tension in \textrm{X} and the tension in \textrm{Y}?


Roughwork.

As always start with free-body diagrams. Take upward positive. First the lower block:

Then the higher block:

Or alternatively,

Ans. \begin{cases} T_\textrm{X}=7\,\mathrm{N} \\ T_\textrm{Y}=2\,\mathrm{N} \\ \end{cases}

This problem is not to be attempted.

202301130918 Solution to 2011-IBHL-PHY-I-3

A skydiver of mass 80\,\mathrm{kg} falls vertically with a constant speed of 50\,\mathrm{m\,s^{-1}}. The upward force acting on the skydiver is approximately

A. 0\,\mathrm{N}.
B. 80\,\mathrm{N}.
C. 800\,\mathrm{N}.
D. 4000\,\mathrm{N}.


Roughwork.

As always start with a free-body diagram.

Take upward positive. Write the equation of motion by Newton’s 2nd law:

\begin{aligned} \mathbf{F}_{\textrm{net}} & = m\mathbf{a} \\ f-mg & = m(0) \\ f & = mg \\ & \approx (80)(10) \\ & = 800 \\ \end{aligned}

And the answer is C.

This problem is not to be attempted.

202301120908 Solution to 2002-IBHL-PHY-I-9

A pendulum has a bob of mass m and swings in the arc shown below.

As the bob swings through the lowest point of its motion, the tension in the string will be

A. zero.
B. less than mg.
C. equal to mg.
D. greater than mg.


Roughwork.

Assumed the string is l long, taut and inextensible.

Derivation. Read More

    \begin{aligned} T & = \frac{1}{2}ml^2\dot{\theta}^2 \\ V & = mgl(1-\cos\theta ) \\ \mathcal{L} & = T-V \\ \frac{\partial \mathcal{L}}{\partial\theta} & = -mgl\sin\theta \\ \frac{\partial \mathcal{L}}{\partial\dot{\theta}} &  = ml^2\dot{\theta} \\ 0 & =\frac{\mathrm{d}}{\mathrm{d}t}\bigg(\frac{\partial\mathcal{L}}{\partial \dot{\theta}}\bigg) - \frac{\partial\mathcal{L}}{\partial \theta} \\ \end{aligned}

    A simple pendulum, under gravity, has

    \textrm{EoM: }\qquad\displaystyle{\ddot{\theta}+\frac{g}{l}\cdot\sin\theta =0}

    the equation of motion, independent of mass m, neglecting friction.

    Lemma. (not in use) Read More

    \begin{aligned} \begin{bmatrix} \hat{\mathbf{e}}_r \\ \hat{\mathbf{e}}_\theta \end{bmatrix} & = \begin{bmatrix} \displaystyle{\frac{\partial x}{\partial r}} & \displaystyle{\frac{\partial y}{\partial r}} \\[2mm]\displaystyle{\frac{1}{r}\frac{\partial x}{\partial\theta}} & \displaystyle{\frac{1}{r}\frac{\partial y}{\partial\theta}} \end{bmatrix}\begin{bmatrix} \hat{\mathbf{e}}_x \\ \hat{\mathbf{e}}_y \end{bmatrix} \\ \begin{bmatrix} \hat{\mathbf{e}}_x \\ \hat{\mathbf{e}}_y \end{bmatrix} & = \begin{bmatrix} \displaystyle{\frac{1}{r}\frac{\partial y}{\partial \theta}} & \displaystyle{-\frac{\partial y}{\partial r}} \\[2mm]\displaystyle{-\frac{1}{r}\frac{\partial x}{\partial\theta}} & \displaystyle{\frac{\partial x}{\partial r}} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{e}}_r \\ \hat{\mathbf{e}}_\theta \end{bmatrix} \\ \end{aligned}

    The net force for this non-uniform circular motion, being centripetal force producing radial plus tangential accelerations,

    \mathbf{a} = -l(\dot{\theta}^2\cos\theta +\ddot{\theta}\sin\theta)\,\hat{\mathbf{i}} + l(\ddot{\theta}\cos\theta -\dot{\theta}^2\sin\theta )\,\hat{\mathbf{j}}

    is the resultant of tension

    \begin{aligned} T & = |\mathbf{T}| \\ \mathbf{T} & =T\sin\theta\,\hat{\mathbf{i}}+T\cos\theta\,\hat{\mathbf{j}}} \end{aligned}

    and weight \mathbf{W}=m\mathbf{g}=-mg\,\hat{\mathbf{j}}. Write, with a free-body diagram in mind,

    \begin{aligned} \because\enspace & \mathbf{F}_{\textrm{net}}  =\mathbf{T}+\mathbf{W}=m\mathbf{a} \\ \therefore\enspace & \begin{cases} T\sin\theta = -ml(\dot{\theta}^2\cos\theta+\ddot{\theta}\sin\theta ) \\ T\cos\theta - mg = ml(\ddot{\theta}\cos\theta-\dot{\theta}^2\sin\theta ) \\ \end{cases} \\ \end{aligned}

    When the bob is at the lowest point, i.e., \theta =0,

    \begin{aligned} T & = mg + ml\ddot{\theta} \\ & = mg - mg\sin\theta \qquad (\textrm{by EoM})\\ & \approx mg-mg\theta \qquad (\because\enspace \sin\theta\approx\theta\textrm{ for small }\theta)\\ & \lneq mg \\ \end{aligned}

    The official answer is D but mine B.  Could that be E: more or less mg? If I am wrong, I must have omitted some simple facts of noble truth.

    This problem is not to be attempted.

202301111028 Solution to 2003-IBHL-I-4

Two forces of magnitudes 7\,\mathrm{N} and 5\,\mathrm{N} act at a point. Which one of the following is not a possible value for the magnitude of the resultant force?

A. 1\,\mathrm{N}
B. 3\,\mathrm{N}
C. 5\,\mathrm{N}
D. 7\,\mathrm{N}


Roughwork.

Suppose

\begin{aligned} \mathbf{F}_1 & = 7\sin\alpha\,\hat{\mathbf{i}} + 7\cos\alpha\,\hat{\mathbf{j}} \\ \mathbf{F}_2 & = 5\sin\beta\,\hat{\mathbf{i}} + 5\cos\beta\,\hat{\mathbf{j}} \\ \end{aligned}

where \alpha ,\beta\in [0,2\pi ).

\begin{aligned} \mathbf{F}_3 & = \mathbf{F}_1+\mathbf{F}_2 \\ & = (7\sin\alpha + 5\sin\beta )\,\hat{\mathbf{i}} + (7\cos\alpha +5\cos\beta )\,\hat{\mathbf{j}} \\ F_3 & = |\mathbf{F}_3| \\ & = \sqrt{(7\sin\alpha + 5\sin\beta )^2 + (7\cos\alpha +5\cos\beta )^2}\\ & = \sqrt{74+70(\sin\alpha\sin\beta +\cos\alpha\cos\beta )}\\ & = \sqrt{74+70\cos (\alpha-\beta)} \\ \end{aligned}

\begin{aligned} \because \quad & \begin{cases} \max (F_3) = \sqrt{74+70(1)} = 12 \\ \min (F_3) = \sqrt{74+70(-1)} = 2 \\ \end{cases} \\ \therefore\quad & F_3 \in [2,12] \\ \end{aligned}

One can actually do without vector analysis for the sake of a mental exercise.

This problem is not to be attempted.

202301110923 Solution to 1980-AL-PHY-IA-26

A charged ball X is suspended by a string.

When a uniform electric field E is applied horizontally, the ball is displaced a horizontal distance a such that the string makes an angle \theta with the vertical.


Roughwork.

As always start with a free-body diagram. Hence, draw

Resolving components, write

\begin{cases} \textrm{Horizontal:}\quad & T\sin\theta = qE \\ \textrm{Vertical:}\quad & T\cos\theta = mg \\ \end{cases}

Squaring and summing, write

\begin{aligned} (T\sin\theta )^2+ (T\cos\theta)^2 &=  (qE)^2 + (mg)^2\\ T & = \sqrt{q^2E^2+m^2g^2} \\ \end{aligned}

By considering the electric field strength E as an independent variable, and the angle of elevation \theta the dependent variable, make differentiation

\displaystyle{\mathrm{d}E = \bigg(\frac{T\cos\theta}{q}\bigg)\,\mathrm{d}\theta}\qquad(\theta\in [0,90^\circ])

This problem is not to be attempted.

202301101150 Solution to 1999-IBHL-PHY-I-7

Two 10\,\mathrm{kg} blocks on a smooth horizontal surface are tied together. They are accelerated by a horizontal force of 30\,\mathrm{N} which acts as shown below:

If frictional effects are negligible, what is the tension in the connecting rope?


Roughwork.

As always start with free-body diagrams. Take rightward positive. Considering first the bodies as a whole:

so as to write the equation of motion by Newton 2nd law:

\begin{aligned} F_{\textrm{net}} & =ma \\ 30 & = 20a\\ a & = 1.5\,\mathrm{m\,s^{-2}} \\ \end{aligned}

where the tension regarded as internal force does not count. Considering then as individuals,

so as to write:

\begin{aligned} F_{\textrm{net}} & =ma \\ 30 - T & = (10)(1.5)\\ T & = 15\,\mathrm{N} \\ \end{aligned}

One may also do with the left block, but an exercise left the reader.