202109101713 Exercises 1.2.1

Let T:\mathbb{R}^2\rightarrow \mathbb{R}^3 be the function defined by T(x_1,x_2)=(x_1,x_2,0). Show that T is a linear transformation.


Definition. A function T:\mathbb{R}^n\rightarrow \mathbb{R}^m is called a linear transformation if:
(1) T(\mathbf{x}+\mathbf{y})=T(\mathbf{x})+T(\mathbf{y}); and
(2) T(c\mathbf{x})=cT(\mathbf{x}).
The conditions must be satisfied for all \mathbf{x},\mathbf{y} in \mathbb{R}^n and all c in \mathbb{R}.


Proof.

Let \mathbf{x}=(x_1,x_2) and \mathbf{y}=(y_1,y_2).

Then

\begin{aligned} T(\mathbf{x})& =T(x_1,x_2)=(x_1,x_2,0) \\ T(\mathbf{y})&=T(y_1,y_2)=(y_1,y_2,0) \\ T(\mathbf{x})+T(\mathbf{y}) & = (x_1,x_2,0) + (y_1,y_2,0) \\ \Rightarrow\enspace\textrm{RHS} & = (x_1+y_1,x_2+y_2,0)\\ \mathbf{x}+\mathbf{y} & = (x_1,x_2) + (y_1,y_2) \\ & = (x_1+y_1,x_2+y_2) \\ T(\mathbf{x}+\mathbf{y}) & = T(x_1+y_1,x_2+y_2) \\ \Rightarrow\enspace\textrm{LHS} & = (x_1+y_1,x_2+y_2,0) \\ \therefore\enspace \textrm{LHS} & = \textrm{RHS} \\ \end{aligned}

Condition (1) is thus satisfied.

\forall\, c\in\mathbb{R} and \forall\, \mathbf{x}=(x_1,x_2)\in\mathbb{R}^2,

\begin{aligned} cT(\mathbf{x}) & = cT(x_1,x_2) \\ & = c(x_1,x_2,0) \\ \Rightarrow\enspace\textrm{RHS} & = (cx_1,cx_2,0) \\ T(c\mathbf{x}) & = T(c(x_1,x_2)) \\ & = T(cx_1,cx_2) \\ \Rightarrow \enspace\textrm{LHS} & = (cx_1,cx_2,0) \\ & = \textrm{RHS} \\ \end{aligned}

Condition (2) is also satisfied.

In conclusion, T is a linear transformation.

202109101556 Exercises 1.2.C (Q16)

For Exercises 16-21, assuming that f'(x) exists, prove the given formula.

f'(x)=\displaystyle{\lim_{h\to 0}\frac{f(x+2h)-f(x-2h)}{4h}}


Proof.

Renaming by dummy variables.

Let y=x-2h, then x+2h=(x-2h)+4h=y+4h.

Rewrite it as

f'(x)=\displaystyle{\lim_{h\to 0}\frac{f(y+4h)-f(y)}{4h}}.

Note that

\displaystyle{\lim_{h\to 0}}[\,\cdots ]\Rightarrow \displaystyle{\lim_{4h\to 0}}[\,\cdots ].

So,

\begin{aligned} f'(x) & = \lim_{4h\to 0}\frac{f(y+4h)-f(y)}{4h} \\ & = \lim_{\Delta y\to 0}\frac{f(y+\Delta y)-f(y)}{\Delta y} \\ & = \lim_{\Delta y\to 0}\frac{\Delta f}{\Delta y}\\ & = \frac{\mathrm{d}f}{\mathrm{d}y}\\ & = \dots\enspace \textrm{(discontinued)}\enspace \dots \\ \end{aligned}

Do you spot the flaw in the Proof?


(revised)

As left-hand limit and right-hand limit are equivalent,

i.e., f'(x)=\displaystyle{\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}=\lim_{h\to 0}\frac{f(x)-f(x-h)}{h}},

in our scenario, do write

\begin{aligned} f'(x) & = \lim_{2h\to 0}\frac{f(x+2h)-f(x)}{2h}=\lim_{2h\to 0}\frac{f(x)-f(x-2h)}{2h} \\ \frac{1}{2}f'(x) & =\lim_{2h\to 0}\frac{f(x+2h)-f(x)}{4h}=\lim_{2h\to 0}\frac{f(x)-f(x-2h)}{4h}\\ \end{aligned}

Then

\begin{aligned} & \quad \lim_{h\to 0}\frac{f(x+2h)-f(x-2h)}{4h} \\ & = \lim_{h\to 0}\frac{\big( f(x+2h)-f(x)\big) + \big( f(x)-f(x-2h) \big) }{4h} \\ & = \lim_{h\to 0}\frac{f(x+2h)-f(x)}{4h} + \lim_{h\to 0}\frac{f(x)-f(x-2h)}{4h} \\ & = \lim_{2h\to 0}\frac{f(x+2h)-f(x)}{4h} + \lim_{2h\to 0}\frac{f(x)-f(x-2h)}{4h} \\ & = \frac{1}{2}\cdot f'(x)+\frac{1}{2}\cdot f'(x) \\ & = f'(x) \\ \end{aligned}

QED

202109101417 Exercises 1.1.A (Q5)

By equation (1.1), \pi =4(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\cdots ), where the n^{\textrm{th}} term in the sum inside the parenthesis is \frac{(-1)^{n+1}}{2n-1} (starting at n=1). So the first approximation of \pi using this formula is \pi\approx 4(1)=4.0, and the second approximation is \pi\approx 4(1-\frac{1}{3})=8/3\approx 2.66667. Continue like this until two consecutive approximations have 3 as the first digit before the decimal point. How many terms in the sum did this require? Be careful with rounding off in the approximations.


Attempts.

1^{\textrm{st}} approximation:

\pi\approx 4(1)=4.0

2^{\textrm{nd}} approximation:

\pi\approx 4(1-\frac{1}{3})=\frac{8}{3}\approx 2.66667

3^{\textrm{rd}} approximation:

\pi\approx 4(1-\frac{1}{3}+\frac{1}{5})=\frac{52}{15}\approx 3.466667\quad (\textrm{5 d.p.})

4^{\textrm{th}} approximation:

\pi\approx 4(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7})=\frac{304}{105}\approx 2.89523\quad (\textrm{5 d.p.})

5^{\textrm{th}} approximation:

\pi\approx 4(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9})=\frac{1052}{315}\approx 3.33968\quad (\textrm{5 d.p.})

6^{\textrm{th}} approximation:

\pi\approx 4(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11})=\frac{10312}{3465}\approx 2.97605\quad (\textrm{5 d.p.})

7^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}\bigg) \\ & =\frac{147916}{45045} \\ & \approx 3.28374\quad (\textrm{5 d.p.}) \end{aligned}

8^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}\bigg) \\ & =\frac{135904}{45045} \\ & \approx 3.01707\quad (\textrm{5 d.p.}) \end{aligned}

9^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}\bigg) \\ & =\frac{2490548}{765765} \\ & \approx 3.25237\quad (\textrm{5 d.p.}) \end{aligned}

10^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}\bigg) \\ & =\frac{44257352}{14549535} \\ & \approx 3.04184\quad (\textrm{5 d.p.}) \end{aligned}

11^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}\bigg) \\ & =\frac{47028692}{14549535} \\ & \approx 3.23232\quad (\textrm{5 d.p.}) \end{aligned}

12^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23}\bigg) \\ & =\frac{1023461776}{334639305} \\ & \approx 3.05840\quad (\textrm{5 d.p.}) \end{aligned}

13^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}\bigg) \\ & =\frac{5385020324}{1673196525} \\ & \approx 3.21840\quad (\textrm{5 d.p.}) \end{aligned}

14^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}\bigg) \\ & =\frac{15411418072}{5019589575} \\ & \approx 3.07025\quad (\textrm{5 d.p.}) \end{aligned}

15^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}\bigg) \\ & =\frac{467009482388}{145568097675} \\ & \approx 3.20819\quad (\textrm{5 d.p.}) \end{aligned}

16^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}\bigg) \\ & =\frac{13895021563328}{4512611027925} \\ & \approx 3.07915\quad (\textrm{5 d.p.}) \end{aligned}

17^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}+\frac{1}{33}\bigg) \\ & =\frac{14442004718228}{4512611027925} \\ & \approx 3.20037\quad (\textrm{5 d.p.}) \end{aligned}

18^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}+\frac{1}{33}-\frac{1}{35}\bigg) \\ & =\frac{13926277743608}{4512611027925} \\ & \approx 3.08608\quad (\textrm{5 d.p.}) \end{aligned}

19^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}+\frac{1}{33}-\frac{1}{35}+\frac{1}{37}\bigg) \\ & =\frac{533322720625196}{166966608033225} \\ & \approx 3.19419\quad (\textrm{5 d.p.}) \end{aligned}

20^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}+\frac{1}{33}-\frac{1}{35}+\frac{1}{37}-\frac{1}{39}\bigg) \\ & =\frac{516197940314096}{166966608033225} \\ & \approx 3.09162\quad (\textrm{5 d.p.}) \end{aligned}

21^{\textrm{st}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}+\frac{1}{33}-\frac{1}{35}+\frac{1}{37}-\frac{1}{39}+\frac{1}{41}\bigg) \\ & =\frac{21831981985010836}{6845630929362225} \\ & \approx 3.18918\quad (\textrm{5 d.p.}) \end{aligned}

22^{\textrm{nd}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}+\frac{1}{33}-\frac{1}{35}+\frac{1}{37}-\frac{1}{39}+\frac{1}{41}-\frac{1}{43}\bigg) \\ & =\frac{911392701638017048}{294362129962575675} \\ & \approx 3.09616\quad (\textrm{5 d.p.}) \end{aligned}

23^{\textrm{rd}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}+\frac{1}{33}-\frac{1}{35}+\frac{1}{37}-\frac{1}{39}+\frac{1}{41}-\frac{1}{43}+\frac{1}{45}\bigg) \\ & =\frac{937558224301357108}{294362129962575675} \\ & \approx 3.18505\quad (\textrm{5 d.p.}) \end{aligned}

24^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}+\frac{1}{33}-\frac{1}{35}+\frac{1}{37}-\frac{1}{39}+\frac{1}{41}-\frac{1}{43}+\frac{1}{45}\\ & \qquad\qquad\quad -\frac{1}{47}\bigg) \\ & =\frac{42887788022313481376}{13835020108241056725} \\ & \approx 3.09994\quad (\textrm{5 d.p.}) \end{aligned}

25^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}+\frac{1}{33}-\frac{1}{35}+\frac{1}{37}-\frac{1}{39}+\frac{1}{41}-\frac{1}{43}+\frac{1}{45}\\ & \qquad\qquad\quad -\frac{1}{47}+\frac{1}{49}\bigg) \\ & =\frac{308120241932332116332}{96845140757687397075} \\ & \approx 3.18158\quad (\textrm{5 d.p.}) \end{aligned}

26^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}+\frac{1}{33}-\frac{1}{35}+\frac{1}{37}-\frac{1}{39}+\frac{1}{41}-\frac{1}{43}+\frac{1}{45}\\ & \qquad\qquad\quad -\frac{1}{47}+\frac{1}{49}-\frac{1}{51}\bigg) \\ & =\frac{300524544618003693032}{96845140757687397075} \\ & \approx 3.10315\quad (\textrm{5 d.p.}) \end{aligned}

27^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}+\frac{1}{33}-\frac{1}{35}+\frac{1}{37}-\frac{1}{39}+\frac{1}{41}-\frac{1}{43}+\frac{1}{45}\\ & \qquad\qquad\quad -\frac{1}{47}+\frac{1}{49}-\frac{1}{51}+\frac{1}{53}\bigg) \\ & =\frac{16315181427784945318996}{5132792460157432044975} \\ & \approx 3.17862\quad (\textrm{5 d.p.}) \end{aligned}

28^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}+\frac{1}{33}-\frac{1}{35}+\frac{1}{37}-\frac{1}{39}+\frac{1}{41}-\frac{1}{43}+\frac{1}{45}\\ & \qquad\qquad\quad -\frac{1}{47}+\frac{1}{49}-\frac{1}{51}+\frac{1}{53}-\frac{1}{55}\bigg) \\ & =\frac{15941887430682586624816}{5132792460157432044975} \\ & \approx 3.10589\quad (\textrm{5 d.p.}) \end{aligned}

29^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}+\frac{1}{33}-\frac{1}{35}+\frac{1}{37}-\frac{1}{39}+\frac{1}{41}-\frac{1}{43}+\frac{1}{45}\\ & \qquad\qquad\quad -\frac{1}{47}+\frac{1}{49}-\frac{1}{51}+\frac{1}{53}-\frac{1}{55}+\frac{1}{57}\bigg) \\ & =\frac{16302083392798897645516}{5132792460157432044975} \\ & \approx 3.17607\quad (\textrm{5 d.p.}) \end{aligned}

30^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}+\frac{1}{33}-\frac{1}{35}+\frac{1}{37}-\frac{1}{39}+\frac{1}{41}-\frac{1}{43}+\frac{1}{45}\\ & \qquad\qquad\quad -\frac{1}{47}+\frac{1}{49}-\frac{1}{51}+\frac{1}{53}-\frac{1}{55}+\frac{1}{57}-\frac{1}{59}\bigg) \\ & =\frac{941291750334505232905544}{302834755149288490653525} \\ & \approx 3.10827\quad (\textrm{5 d.p.}) \end{aligned}

31^{\textrm{st}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}+\frac{1}{33}-\frac{1}{35}+\frac{1}{37}-\frac{1}{39}+\frac{1}{41}-\frac{1}{43}+\frac{1}{45}\\ & \qquad\qquad\quad -\frac{1}{47}+\frac{1}{49}-\frac{1}{51}+\frac{1}{53}-\frac{1}{55}+\frac{1}{57}-\frac{1}{59}+\frac{1}{61}\bigg) \\ & =\frac{58630135791001973169852284}{18472920064106597929865025} \\ & \approx 3.17384\quad (\textrm{5 d.p.}) \end{aligned}

32^{\textrm{nd}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}+\frac{1}{33}-\frac{1}{35}+\frac{1}{37}-\frac{1}{39}+\frac{1}{41}-\frac{1}{43}+\frac{1}{45}\\ & \qquad\qquad\quad -\frac{1}{47}+\frac{1}{49}-\frac{1}{51}+\frac{1}{53}-\frac{1}{55}+\frac{1}{57}-\frac{1}{59}+\frac{1}{61}-\frac{1}{63}\bigg) \\ & =\frac{57457251977407903460019584}{18472920064106597929865025} \\ & \approx 3.11035\quad (\textrm{5 d.p.}) \end{aligned}

33^{\textrm{rd}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}+\frac{1}{33}-\frac{1}{35}+\frac{1}{37}-\frac{1}{39}+\frac{1}{41}-\frac{1}{43}+\frac{1}{45}\\ & \qquad\qquad\quad -\frac{1}{47}+\frac{1}{49}-\frac{1}{51}+\frac{1}{53}-\frac{1}{55}+\frac{1}{57}-\frac{1}{59}+\frac{1}{61}-\frac{1}{63}+\frac{1}{65}\bigg) \\ & =\frac{4507234389098153984166548}{1420993851085122917681925} \\ & \approx 3.17189\quad (\textrm{5 d.p.}) \end{aligned}

34^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}+\frac{1}{33}-\frac{1}{35}+\frac{1}{37}-\frac{1}{39}+\frac{1}{41}-\frac{1}{43}+\frac{1}{45}\\ & \qquad\qquad\quad -\frac{1}{47}+\frac{1}{49}-\frac{1}{51}+\frac{1}{53}-\frac{1}{55}+\frac{1}{57}-\frac{1}{59}+\frac{1}{61}-\frac{1}{63}+\frac{1}{65}-\frac{1}{67}\bigg) \\ & =\frac{296300728665235825268431016}{95206588022703235484688975} \\ & \approx 3.11219\quad (\textrm{5 d.p.}) \end{aligned}

Summing without aim, I forgot my purpose. Where am I?

(discontinued)


(refreshed)

Please scroll up to the 7^{\textrm{th}} and 8^{\textrm{th}} approximation.

This required seven or eight terms in the sum for having 3 as the first digit before the decimal point.