202206081501 Exercise 4.1 (Q15)

In an electric circuit with a supplied voltage (emf) E, a resistor with resistance r_0, and an inductor with reactance x_0, suppose you want to add a second resistor. If r represents the resistance of this second resistor then the power P delivered to that resistor is given by

\displaystyle{P=\frac{E^2r}{(r+r_0)^2+x_0^2}}

with E, r_0, and x_0 treated as constants. For which value of r is the power P maximized?

extracted from Michael Corral. (2020). Elementary Calculus


Lemma. (quotient rule)

Let f(x)=\displaystyle{\frac{g(x)}{h(x)}}, where both g and h are differentiable and h(x)\neq 0. The quotient rule states that the derivative of f(x) is

f'(x)=\displaystyle{\frac{g'(x)h(x)-g(x)h'(x)}{h(x)^2}}

Wikipedia on Quotient Rule


Roughwork.

Defining

\begin{aligned} g(r) & = E^2r\\ h(r) & = (r+r_0)^2+x_0^2\\ \end{aligned}

and

\begin{aligned} g'(r) & = E^2\\ h'(r) & = 2(r+r_0)\\ \end{aligned}

then

\displaystyle{\frac{\mathrm{d}P}{\mathrm{d}r}}=0\Longrightarrow g'(r)h(r)-g(r)h'(r)=0

Computing as follows

\begin{aligned} (E^2)\big( (r+r_0)^2+x_0^2 \big) & = (E^2r)\big( 2(r+r_0) \big) \\ (r+r_0)^2+x_0^2 & = 2r(r+r_0) \\ r^2+2rr_0+r_0^2 +x_0^2 & = 2r^2+2rr_0 \\ r & = \sqrt{r_0^2+x_0^2} \\ \end{aligned}

The mathematically formal way is to show that

\displaystyle{\frac{\mathrm{d}^2P(r)}{\mathrm{d}r}\bigg|_{r=\sqrt{r^2_0+x_0^2}}}<0


But from a physical point of view, assume that the electric currents i passing through every components in series are the same, and the potential difference across each total up to the supplied voltage, namely,

\begin{aligned} i(t) & = I_{\textrm{peak}}\sin (\omega t) \textrm{ where }I_{\textrm{peak}}\textrm{= const.} \\ E & = ir_0+x_0\frac{\mathrm{d}i}{\mathrm{d}t}+ir \\ \end{aligned}

The power P delivered to resistor r is given by the formula

\boxed{P=Vi=\displaystyle{\frac{V^2}{r}}=i^2r}

and the only way to maximize P, is to maximize either or both i and V.

Solving for a first-order ordinary differential equation:

f(r,i,i')= ir_0+x_0i'+ir-E=0

deriving current i wrt \omega t, we have

\begin{aligned} 0 & = i'r_0+x_0i''+i'r \\ 0 & = -x_0I_{\textrm{peak}}\sin (\omega t)+(r_0+r)I_{\textrm{peak}}\cos (\omega t) \\ 0 & = -x_0\tan (\omega t) + r_0+r \\ \tan (\omega t) & = \frac{r_0+r}{x_0} \\ \sin (\omega t)&=\frac{r_0+r}{\sqrt{(r_0+r)^2+x_0^2}} \\ \end{aligned}

Thus i(r)=\displaystyle{I_{\textrm{peak}}\frac{r_0+r}{\sqrt{(r_0+r)^2+x_0^2}}}

\begin{aligned} P & = i^2r \\ & = \bigg(\frac{I_{\textrm{peak}}(r_0+r)}{\sqrt{(r_0+r)^2+x_0^2}}\bigg)^2 \cdot r \\ & = \frac{I_{\textrm{peak}}^2(r_0+r)^2r}{(r_0+r)^2+x_0^2} \\ \end{aligned}

(to be continued)


Recall the relation between root mean square (rms) values and peak values:

\begin{aligned} V_{\textrm{rms}} & = \frac{V_\textrm{peak}}{\sqrt{2}} \\ I_{\textrm{rms}} & = \frac{I_\textrm{peak}}{\sqrt{2}} \\ \end{aligned}

Recall also that the resistance R_L of an ideal inductor is zero (=0), and that after the circuit has shortly reached steady state (i.e., constant current i anywhere/anytime), the potential difference (\textrm{p.d.}) or voltage drop (\Delta V) across the inductor will become zero (=0) before long.


Try again,

\begin{aligned} I_{\textrm{peak}} & = i \\ \frac{I_{\textrm{peak}}^2(r_0+r)^2r}{(r_0+r)^2+x_0^2} & = \frac{i^2(r_0+r)^2r}{(r_0+r)^2+x_0^2} \\ & = \frac{(ir_0+ir)^2r}{(r_0+r)^2+x_0^2} \\ & = \frac{E^2r}{(r_0+r)^2+x_0^2} \\ \end{aligned}

The derivative test seems inevitable. Maybe you could show that resistance r=\sqrt{r_0^2+x_0^2} maximizes power P, simply by drawing a phasor diagram?

(to be continued)

202206081349 Exercise 4.1 (Q12)

The phase velocity v of a capillary wave with surface tension T and water density p is

\displaystyle{v=\sqrt{\frac{2\pi T}{\lambda p}+\frac{\lambda g}{2\pi}}}

where \lambda is the wavelength. Find the value of \lambda that minimizes v.

extracted from Michael Corral. (2020). Elementary Calculus.


Setup.

Let v=v(u(\lambda )) s.t.

\begin{aligned} v(u) &=\sqrt{u} \\ u(\lambda ) & =\frac{2\pi T}{\lambda p}+\frac{\lambda g}{2\pi } \\ \end{aligned}

\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}u}\big( v(u)\big) & = \frac{1}{2}u^{-1/2}=\frac{1}{2}\Bigg(\sqrt{\frac{2\pi T}{\lambda p}+\frac{\lambda g}{2\pi}}\Bigg)^{-1} \\ \frac{\mathrm{d}}{\mathrm{d}\lambda}\big( u(\lambda )\big) & = -\frac{2\pi T}{\lambda^2p}+\frac{g}{2\pi} \\ \end{aligned}

Hence,

\begin{aligned} \frac{\mathrm{d}v}{\mathrm{d}\lambda} & = \bigg(\frac{\mathrm{d}v}{\mathrm{d}u}\bigg) \bigg(\frac{\mathrm{d}u}{\mathrm{d}\lambda}\bigg) \\ & = \frac{1}{2}\Bigg(\sqrt{\frac{2\pi T}{\lambda p}+\frac{\lambda g}{2\pi}}\Bigg)^{-1}\bigg(-\frac{2\pi T}{\lambda^2p}+\frac{g}{2\pi}\bigg) \\ \end{aligned}


Working.

For \displaystyle{\frac{\mathrm{d}v}{\mathrm{d}\lambda}}=0 requires:

\begin{cases} \displaystyle{\frac{2\pi T}{\lambda p}+\frac{\lambda g}{2\pi}} \neq 0 \\ \displaystyle{-\frac{2\pi T}{\lambda^2p}+\frac{g}{2\pi}}= 0 \\ \end{cases}


Answer.

We have the satisfying stationary point:

\lambda_0 =\displaystyle{2\pi\sqrt{\frac{T}{pg}}}.

It remains to be verified that this is a global minimum indeed.

(to be continued)

202110121413 Exercise 8.5.B (Q21)

This exercise is related to Einstein’s famous law E=mc^2. The relativistic momentum p of a particle of mass m moving at a speed v along a straight line (say, the x-axis) is

\displaystyle{p=\frac{mv}{\sqrt{1-\frac{v^2}{c^2}}}},

where c is the speed of light. The relativistic force on the particle along that line is

\displaystyle{F=\frac{\mathrm{d}p}{\mathrm{d}t}},

which is the same formula as Newton’s Second Law of motion in classical mechanics. Assume that the particle starts at rest at position x_1 and ends at position x_2 along the x-axis. The work done by the force F on the particle is:

\displaystyle{W=\int_{x_1}^{x_2}F\,\mathrm{d}x=\int_{x_1}^{x_2}\frac{\mathrm{d}p}{\mathrm{d}t}\,\mathrm{d}x}

(a) Show that

\displaystyle{\frac{\mathrm{d}p}{\mathrm{d}v}=\frac{m}{\bigg( \displaystyle{1-\frac{v^2}{c^2}}\bigg)^{3/2}}}.

(b) Use the Chain Rule formula

\displaystyle{\frac{\mathrm{d}p}{\mathrm{d}t}=\frac{\mathrm{d}p}{\mathrm{d}v}\frac{\mathrm{d}v}{\mathrm{d}x}\frac{\mathrm{d}x}{\mathrm{d}t}}

to show that

\displaystyle{F\,\mathrm{d}x=v\frac{\mathrm{d}p}{\mathrm{d}v}\,\mathrm{d}v}.

(c) Use parts (a) and (b) to show that

\displaystyle{W=\int_{0}^{v}\frac{\mathrm{d}p}{\mathrm{d}v}\, v\,\mathrm{d}v=\int_{0}^{v}\frac{mv}{\bigg(\displaystyle{ 1-\frac{v^2}{c^2}}\bigg)^{3/2}}\,\mathrm{d}v}.

(d) Use part (c) to show that

\displaystyle{W=\frac{mc^2}{\sqrt{1-\frac{v^2}{c^2}}}-mc^2}.

(e) Define the relativistic kinetic energy K of the particle to be K=W, and define the total energy E to be

\displaystyle{E=\frac{mc^2}{\sqrt{1-\frac{v^2}{c^2}}}}.

So by part (d), K=E-mc^2. Show that

E^2=p^2c^2+(mc^2)^2.

(Hint: Expand the right side of that equation.)

(f) What is E when the particle is at rest?


Solution.

(a)

\begin{aligned} \frac{\mathrm{d}p}{\mathrm{d}v} & = \frac{\mathrm{d}}{\mathrm{d}v}\bigg( \frac{mv}{\sqrt{1-\frac{v^2}{c^2}}}\bigg) \\ & = \frac{\bigg(\sqrt{1-\displaystyle{\frac{v^2}{c^2}}}\bigg)(m)-(mv)\bigg(\displaystyle{\frac{1}{2}}\Big( 1-\displaystyle{\frac{v^2}{c^2}}\Big)^{-1/2}\Big( -\displaystyle{\frac{2v}{c^2}}\Big)\bigg)}{\bigg(\sqrt{1-\displaystyle{\frac{v^2}{c^2}}}\bigg)^2} \\ & = \frac{\bigg( 1-\displaystyle{\frac{v^2}{c^2}}\bigg) (m)-(mv)\bigg( \displaystyle{-\frac{v}{c^2}}\bigg)}{\bigg( 1-\displaystyle{\frac{v^2}{c^2}}\bigg)^{3/2}} \\ & = \frac{m}{\bigg( 1-\displaystyle{\frac{v^2}{c^2}}\bigg)^{3/2}} \end{aligned}

(b)

\begin{aligned} \int_{x_1}^{x_2}F\,\mathrm{d}x & = \int_{x_1}^{x_2}\frac{\mathrm{d}p}{\mathrm{d}t}\,\mathrm{d}x \\ \int_{x_1}^{x_2}F\,\mathrm{d}x & = \int_{x_1}^{x_2}\frac{\mathrm{d}p}{\mathrm{d}v}\frac{\mathrm{d}v}{\mathrm{d}x}\frac{\mathrm{d}x}{\mathrm{d}t}\,\mathrm{d}x \\ F\,\mathrm{d}x & = \frac{\mathrm{d}p}{\mathrm{d}v}\frac{\mathrm{d}v}{\mathrm{d}x}\frac{\mathrm{d}x}{\mathrm{d}t}\,\mathrm{d}x \\ & = v\,\frac{\mathrm{d}p}{\mathrm{d}v}\,\mathrm{d}v\\ \end{aligned}

(c)

\begin{aligned} W & =\int_{0}^{v}\frac{\mathrm{d}p}{\mathrm{d}v}\, v\,\mathrm{d}v \\ & = \int_{0}^{v}\Bigg( \frac{m}{\big( 1-\frac{v^2}{c^2}\big)^{3/2}}\Bigg) (v)\,\mathrm{d}v\\ & =\int_{0}^{v}\frac{mv}{\bigg(\displaystyle{ 1-\frac{v^2}{c^2}}\bigg)^{3/2}}\,\mathrm{d}v \\ \end{aligned}.

(d)

\begin{aligned} W & = \int_{0}^{v}\frac{mv}{\bigg(\displaystyle{1-\frac{v^2}{c^2}}\bigg)^{3/2}}\,\mathrm{d}v \\ \dots\enspace & \textrm{let }u=\frac{v}{c}\enspace\dots \\ \dots\enspace & \textrm{then }\mathrm{d}v=c\,\mathrm{d}u\enspace\dots \\ & = \int_{0}^{\frac{v}{c}}\frac{mc^2u}{(1-u^2)^{\frac{3}{2}}}\,\mathrm{d}u \\ \dots\enspace & \textrm{let }u=\sin\theta\enspace\dots \\ \dots\enspace & \textrm{then }\mathrm{d}u=\cos\theta\,\mathrm{d}\theta\enspace\dots \\ & = \int\frac{mc^2\sin\theta}{\cos^3\theta}\cdot\cos\theta\,\mathrm{d}\theta \\ & = \int\frac{mc^2\sin\theta}{\cos^2\theta}\,\mathrm{d}\theta \\ \dots\enspace & \textrm{let }w=\cos\theta\enspace\dots \\ \dots\enspace & \textrm{then }\mathrm{d}w=-\sin\theta\,\mathrm{d}\theta\enspace\dots \\ & \quad -\int \frac{mc^2}{w^2}\,\mathrm{d}w \\ & = \frac{mc^2}{w} \\ & = \frac{mc^2}{\cos\theta} \\ & = mc^2\sec\theta \\ & = \frac{mc^2}{\sqrt{1-u^2}} \\ & = \enspace\dots \\ & = \bigg[\frac{mc^2}{\sqrt{1-u^2}}\bigg]\bigg|^{\frac{v}{c}}_{0} \\ & = \frac{mc^2}{\sqrt{1-\displaystyle{\frac{v^2}{c^2}}}}-mc^2 \\ \end{aligned}

Parts (e) and (f) are left to the readers.

202109101556 Exercises 1.2.C (Q16)

For Exercises 16-21, assuming that f'(x) exists, prove the given formula.

f'(x)=\displaystyle{\lim_{h\to 0}\frac{f(x+2h)-f(x-2h)}{4h}}


Proof.

Renaming by dummy variables.

Let y=x-2h, then x+2h=(x-2h)+4h=y+4h.

Rewrite it as

f'(x)=\displaystyle{\lim_{h\to 0}\frac{f(y+4h)-f(y)}{4h}}.

Note that

\displaystyle{\lim_{h\to 0}}[\,\cdots ]\Rightarrow \displaystyle{\lim_{4h\to 0}}[\,\cdots ].

So,

\begin{aligned} f'(x) & = \lim_{4h\to 0}\frac{f(y+4h)-f(y)}{4h} \\ & = \lim_{\Delta y\to 0}\frac{f(y+\Delta y)-f(y)}{\Delta y} \\ & = \lim_{\Delta y\to 0}\frac{\Delta f}{\Delta y}\\ & = \frac{\mathrm{d}f}{\mathrm{d}y}\\ & = \dots\enspace \textrm{(discontinued)}\enspace \dots \\ \end{aligned}

Do you spot the flaw in the Proof?


(revised)

As left-hand limit and right-hand limit are equivalent,

i.e., f'(x)=\displaystyle{\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}=\lim_{h\to 0}\frac{f(x)-f(x-h)}{h}},

in our scenario, do write

\begin{aligned} f'(x) & = \lim_{2h\to 0}\frac{f(x+2h)-f(x)}{2h}=\lim_{2h\to 0}\frac{f(x)-f(x-2h)}{2h} \\ \frac{1}{2}f'(x) & =\lim_{2h\to 0}\frac{f(x+2h)-f(x)}{4h}=\lim_{2h\to 0}\frac{f(x)-f(x-2h)}{4h}\\ \end{aligned}

Then

\begin{aligned} & \quad \lim_{h\to 0}\frac{f(x+2h)-f(x-2h)}{4h} \\ & = \lim_{h\to 0}\frac{\big( f(x+2h)-f(x)\big) + \big( f(x)-f(x-2h) \big) }{4h} \\ & = \lim_{h\to 0}\frac{f(x+2h)-f(x)}{4h} + \lim_{h\to 0}\frac{f(x)-f(x-2h)}{4h} \\ & = \lim_{2h\to 0}\frac{f(x+2h)-f(x)}{4h} + \lim_{2h\to 0}\frac{f(x)-f(x-2h)}{4h} \\ & = \frac{1}{2}\cdot f'(x)+\frac{1}{2}\cdot f'(x) \\ & = f'(x) \\ \end{aligned}

QED

202109101417 Exercises 1.1.A (Q5)

By equation (1.1), \pi =4(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\cdots ), where the n^{\textrm{th}} term in the sum inside the parenthesis is \frac{(-1)^{n+1}}{2n-1} (starting at n=1). So the first approximation of \pi using this formula is \pi\approx 4(1)=4.0, and the second approximation is \pi\approx 4(1-\frac{1}{3})=8/3\approx 2.66667. Continue like this until two consecutive approximations have 3 as the first digit before the decimal point. How many terms in the sum did this require? Be careful with rounding off in the approximations.


Attempts.

1^{\textrm{st}} approximation:

\pi\approx 4(1)=4.0

2^{\textrm{nd}} approximation:

\pi\approx 4(1-\frac{1}{3})=\frac{8}{3}\approx 2.66667

3^{\textrm{rd}} approximation:

\pi\approx 4(1-\frac{1}{3}+\frac{1}{5})=\frac{52}{15}\approx 3.466667\quad (\textrm{5 d.p.})

4^{\textrm{th}} approximation:

\pi\approx 4(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7})=\frac{304}{105}\approx 2.89523\quad (\textrm{5 d.p.})

5^{\textrm{th}} approximation:

\pi\approx 4(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9})=\frac{1052}{315}\approx 3.33968\quad (\textrm{5 d.p.})

6^{\textrm{th}} approximation:

\pi\approx 4(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11})=\frac{10312}{3465}\approx 2.97605\quad (\textrm{5 d.p.})

7^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}\bigg) \\ & =\frac{147916}{45045} \\ & \approx 3.28374\quad (\textrm{5 d.p.}) \end{aligned}

8^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}\bigg) \\ & =\frac{135904}{45045} \\ & \approx 3.01707\quad (\textrm{5 d.p.}) \end{aligned}

9^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}\bigg) \\ & =\frac{2490548}{765765} \\ & \approx 3.25237\quad (\textrm{5 d.p.}) \end{aligned}

10^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}\bigg) \\ & =\frac{44257352}{14549535} \\ & \approx 3.04184\quad (\textrm{5 d.p.}) \end{aligned}

11^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}\bigg) \\ & =\frac{47028692}{14549535} \\ & \approx 3.23232\quad (\textrm{5 d.p.}) \end{aligned}

12^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23}\bigg) \\ & =\frac{1023461776}{334639305} \\ & \approx 3.05840\quad (\textrm{5 d.p.}) \end{aligned}

13^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}\bigg) \\ & =\frac{5385020324}{1673196525} \\ & \approx 3.21840\quad (\textrm{5 d.p.}) \end{aligned}

14^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}\bigg) \\ & =\frac{15411418072}{5019589575} \\ & \approx 3.07025\quad (\textrm{5 d.p.}) \end{aligned}

15^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}\bigg) \\ & =\frac{467009482388}{145568097675} \\ & \approx 3.20819\quad (\textrm{5 d.p.}) \end{aligned}

16^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}\bigg) \\ & =\frac{13895021563328}{4512611027925} \\ & \approx 3.07915\quad (\textrm{5 d.p.}) \end{aligned}

17^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}+\frac{1}{33}\bigg) \\ & =\frac{14442004718228}{4512611027925} \\ & \approx 3.20037\quad (\textrm{5 d.p.}) \end{aligned}

18^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}+\frac{1}{33}-\frac{1}{35}\bigg) \\ & =\frac{13926277743608}{4512611027925} \\ & \approx 3.08608\quad (\textrm{5 d.p.}) \end{aligned}

19^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}+\frac{1}{33}-\frac{1}{35}+\frac{1}{37}\bigg) \\ & =\frac{533322720625196}{166966608033225} \\ & \approx 3.19419\quad (\textrm{5 d.p.}) \end{aligned}

20^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}+\frac{1}{33}-\frac{1}{35}+\frac{1}{37}-\frac{1}{39}\bigg) \\ & =\frac{516197940314096}{166966608033225} \\ & \approx 3.09162\quad (\textrm{5 d.p.}) \end{aligned}

21^{\textrm{st}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}+\frac{1}{33}-\frac{1}{35}+\frac{1}{37}-\frac{1}{39}+\frac{1}{41}\bigg) \\ & =\frac{21831981985010836}{6845630929362225} \\ & \approx 3.18918\quad (\textrm{5 d.p.}) \end{aligned}

22^{\textrm{nd}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}+\frac{1}{33}-\frac{1}{35}+\frac{1}{37}-\frac{1}{39}+\frac{1}{41}-\frac{1}{43}\bigg) \\ & =\frac{911392701638017048}{294362129962575675} \\ & \approx 3.09616\quad (\textrm{5 d.p.}) \end{aligned}

23^{\textrm{rd}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}+\frac{1}{33}-\frac{1}{35}+\frac{1}{37}-\frac{1}{39}+\frac{1}{41}-\frac{1}{43}+\frac{1}{45}\bigg) \\ & =\frac{937558224301357108}{294362129962575675} \\ & \approx 3.18505\quad (\textrm{5 d.p.}) \end{aligned}

24^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}+\frac{1}{33}-\frac{1}{35}+\frac{1}{37}-\frac{1}{39}+\frac{1}{41}-\frac{1}{43}+\frac{1}{45}\\ & \qquad\qquad\quad -\frac{1}{47}\bigg) \\ & =\frac{42887788022313481376}{13835020108241056725} \\ & \approx 3.09994\quad (\textrm{5 d.p.}) \end{aligned}

25^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}+\frac{1}{33}-\frac{1}{35}+\frac{1}{37}-\frac{1}{39}+\frac{1}{41}-\frac{1}{43}+\frac{1}{45}\\ & \qquad\qquad\quad -\frac{1}{47}+\frac{1}{49}\bigg) \\ & =\frac{308120241932332116332}{96845140757687397075} \\ & \approx 3.18158\quad (\textrm{5 d.p.}) \end{aligned}

26^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}+\frac{1}{33}-\frac{1}{35}+\frac{1}{37}-\frac{1}{39}+\frac{1}{41}-\frac{1}{43}+\frac{1}{45}\\ & \qquad\qquad\quad -\frac{1}{47}+\frac{1}{49}-\frac{1}{51}\bigg) \\ & =\frac{300524544618003693032}{96845140757687397075} \\ & \approx 3.10315\quad (\textrm{5 d.p.}) \end{aligned}

27^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}+\frac{1}{33}-\frac{1}{35}+\frac{1}{37}-\frac{1}{39}+\frac{1}{41}-\frac{1}{43}+\frac{1}{45}\\ & \qquad\qquad\quad -\frac{1}{47}+\frac{1}{49}-\frac{1}{51}+\frac{1}{53}\bigg) \\ & =\frac{16315181427784945318996}{5132792460157432044975} \\ & \approx 3.17862\quad (\textrm{5 d.p.}) \end{aligned}

28^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}+\frac{1}{33}-\frac{1}{35}+\frac{1}{37}-\frac{1}{39}+\frac{1}{41}-\frac{1}{43}+\frac{1}{45}\\ & \qquad\qquad\quad -\frac{1}{47}+\frac{1}{49}-\frac{1}{51}+\frac{1}{53}-\frac{1}{55}\bigg) \\ & =\frac{15941887430682586624816}{5132792460157432044975} \\ & \approx 3.10589\quad (\textrm{5 d.p.}) \end{aligned}

29^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}+\frac{1}{33}-\frac{1}{35}+\frac{1}{37}-\frac{1}{39}+\frac{1}{41}-\frac{1}{43}+\frac{1}{45}\\ & \qquad\qquad\quad -\frac{1}{47}+\frac{1}{49}-\frac{1}{51}+\frac{1}{53}-\frac{1}{55}+\frac{1}{57}\bigg) \\ & =\frac{16302083392798897645516}{5132792460157432044975} \\ & \approx 3.17607\quad (\textrm{5 d.p.}) \end{aligned}

30^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}+\frac{1}{33}-\frac{1}{35}+\frac{1}{37}-\frac{1}{39}+\frac{1}{41}-\frac{1}{43}+\frac{1}{45}\\ & \qquad\qquad\quad -\frac{1}{47}+\frac{1}{49}-\frac{1}{51}+\frac{1}{53}-\frac{1}{55}+\frac{1}{57}-\frac{1}{59}\bigg) \\ & =\frac{941291750334505232905544}{302834755149288490653525} \\ & \approx 3.10827\quad (\textrm{5 d.p.}) \end{aligned}

31^{\textrm{st}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}+\frac{1}{33}-\frac{1}{35}+\frac{1}{37}-\frac{1}{39}+\frac{1}{41}-\frac{1}{43}+\frac{1}{45}\\ & \qquad\qquad\quad -\frac{1}{47}+\frac{1}{49}-\frac{1}{51}+\frac{1}{53}-\frac{1}{55}+\frac{1}{57}-\frac{1}{59}+\frac{1}{61}\bigg) \\ & =\frac{58630135791001973169852284}{18472920064106597929865025} \\ & \approx 3.17384\quad (\textrm{5 d.p.}) \end{aligned}

32^{\textrm{nd}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}+\frac{1}{33}-\frac{1}{35}+\frac{1}{37}-\frac{1}{39}+\frac{1}{41}-\frac{1}{43}+\frac{1}{45}\\ & \qquad\qquad\quad -\frac{1}{47}+\frac{1}{49}-\frac{1}{51}+\frac{1}{53}-\frac{1}{55}+\frac{1}{57}-\frac{1}{59}+\frac{1}{61}-\frac{1}{63}\bigg) \\ & =\frac{57457251977407903460019584}{18472920064106597929865025} \\ & \approx 3.11035\quad (\textrm{5 d.p.}) \end{aligned}

33^{\textrm{rd}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}+\frac{1}{33}-\frac{1}{35}+\frac{1}{37}-\frac{1}{39}+\frac{1}{41}-\frac{1}{43}+\frac{1}{45}\\ & \qquad\qquad\quad -\frac{1}{47}+\frac{1}{49}-\frac{1}{51}+\frac{1}{53}-\frac{1}{55}+\frac{1}{57}-\frac{1}{59}+\frac{1}{61}-\frac{1}{63}+\frac{1}{65}\bigg) \\ & =\frac{4507234389098153984166548}{1420993851085122917681925} \\ & \approx 3.17189\quad (\textrm{5 d.p.}) \end{aligned}

34^{\textrm{th}} approximation:

\begin{aligned} \pi & \approx 4\bigg( 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23} \\ & \qquad\quad +\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}+\frac{1}{33}-\frac{1}{35}+\frac{1}{37}-\frac{1}{39}+\frac{1}{41}-\frac{1}{43}+\frac{1}{45}\\ & \qquad\qquad\quad -\frac{1}{47}+\frac{1}{49}-\frac{1}{51}+\frac{1}{53}-\frac{1}{55}+\frac{1}{57}-\frac{1}{59}+\frac{1}{61}-\frac{1}{63}+\frac{1}{65}-\frac{1}{67}\bigg) \\ & =\frac{296300728665235825268431016}{95206588022703235484688975} \\ & \approx 3.11219\quad (\textrm{5 d.p.}) \end{aligned}

Summing without aim, I forgot my purpose. Where am I?

(discontinued)


(refreshed)

Please scroll up to the 7^{\textrm{th}} and 8^{\textrm{th}} approximation.

This required seven or eight terms in the sum for having 3 as the first digit before the decimal point.