202204021539 Example 3, Chapter 1.3, Methods in Physics II (2015-2016 Lectures)

If \mathbf{f}(t)=t\,\hat{\mathbf{i}}+t^3\,\hat{\mathbf{j}}, \mathbf{g}(t)=\cos t\,\hat{\mathbf{i}}+\sin t\,\hat{\mathbf{j}}, and \mathbf{v}=2\,\hat{\mathbf{i}}-3\,\hat{\mathbf{j}}. Calculate

(a) (\mathbf{f}+\mathbf{g})';

(b) (\mathbf{v}\cdot\mathbf{f})';

(c) (\mathbf{f}\cdot\mathbf{g})'.


Settings. (Some properties of vector differentiation)

i. If \mathbf{f} and \mathbf{g} are differentiable vector functions,

\displaystyle{\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{f}+\mathbf{g})=\frac{\mathrm{d}\mathbf{f}}{\mathrm{d}t}+\frac{\mathrm{d}\mathbf{g}}{\mathrm{d}t}}

ii. If \mathbf{f} is a differentiable vector function and \alpha a constant scalar,

\displaystyle{\frac{\mathrm{d}}{\mathrm{d}t}(\alpha\mathbf{f})=\alpha\frac{\mathrm{d}\mathbf{f}}{\mathrm{d}t}}

iii. If \mathbf{f}(t) is a vector function, \mathbf{v} a constant vector, and \mathbf{v}\cdot\mathbf{f} differentiable,

\displaystyle{\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{v}\cdot\mathbf{f})=\mathbf{v}\cdot\frac{\mathrm{d}\mathbf{f}}{\mathrm{d}t}}

iv. If h(t) is a scalar function, \mathbf{f}(t) a vector function and h\mathbf{f} differentiable,

\displaystyle{\frac{\mathrm{d}}{\mathrm{d}t}(h\mathbf{f})=h\frac{\mathrm{d}\mathbf{f}}{\mathrm{d}t}+\mathbf{f}\frac{\mathrm{d}h}{\mathrm{d}t}}

v. If \mathbf{f} and \mathbf{g} are vector functions and \mathbf{f}\cdot\mathbf{g} differentiable,

\displaystyle{\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{f}\cdot\mathbf{g})=\mathbf{f}\cdot\frac{\mathrm{d}\mathbf{g}}{\mathrm{d}t}+\mathbf{g}\cdot\frac{\mathrm{d}\mathbf{f}}{\mathrm{d}t}}

vi. If \mathbf{f} and \mathbf{g} are vector functions and \mathbf{f}\times\mathbf{g} differentiable,

\displaystyle{\frac{\mathrm{d}}{\mathrm{d}t}}(\mathbf{f}\times\mathbf{g})=\displaystyle{\bigg( \frac{\mathrm{d}\mathbf{f}}{\mathrm{d}t}\times\mathbf{g}\bigg) + \bigg( \mathbf{f}\times \frac{\mathrm{d}\mathbf{g}}{\mathrm{d}t}\bigg)}.


Solution.

(a)

\begin{aligned} \mathbf{f}+\mathbf{g} & = (t+\cos t)\,\hat{\mathbf{i}}+(t^3+\sin t)\,\hat{\mathbf{j}} \\ (\mathbf{f}+\mathbf{g})' & = (t+\cos t)'\,\hat{\mathbf{i}}+(t^3+\sin t)'\,\hat{\mathbf{j}} \\ & = (1-\sin t)\,\hat{\mathbf{i}}+(3t^2+\cos t)\,\hat{\mathbf{j}} \\ \end{aligned}

(b)

\begin{aligned} \mathbf{v}\cdot\mathbf{f} & = (2,-3)\cdot (t,t^3) \\ & = 2t-3t^3 \\ (\mathbf{v}\cdot\mathbf{f})' & = (2t-3t^3)' \\ & = 2-9t^2 \\ \end{aligned}

(c)

\begin{aligned} \mathbf{f}\cdot\mathbf{g} & = (t,t^3) \cdot (\cos t,\sin t) \\ & = t\cos t+t^3\sin t \\ (\mathbf{f}\cdot\mathbf{g})' & = \cos t-t\sin t+t^3\cos t + 3t^2\sin t\\ \end{aligned}

202104241713 Homework 1 (Q7)

The height of a mountain is given by h(x,y)=3000-2x^2-y^2, where the y-axis points east, the x-axis points north, and all distances are measured in meters. Suppose a mountain climber is at the point (30,\, -20,\, 800), will he ascend or descend if he moves in the southwest direction?


Solution.

(The solution below is based on the manuscript of 2015-2016 PHYS2155 Methods of Physics II Homework Solutions.)

The altitude h(x,y) is given by a function of x and y:

h(x,y)=3000-2x^2-y^2.

Now that the climber moves in the southwest direction

\begin{aligned} \mathbf{n} & =-1\,\hat{\mathbf{i}}-1\,\hat{\mathbf{j}} \\ \hat{\mathbf{n}} & = \frac{1}{\sqrt{2}}(-\hat{\mathbf{i}}-\hat{\mathbf{j}}) \end{aligned}

\begin{aligned} h_{\hat{\mathbf{n}}}'(x,y) & = \nabla h(x,y)\cdot \hat{\mathbf{n}} \\ & = (-4x\,\hat{\mathbf{i}}-2y\,\hat{\mathbf{j}}) \cdot \frac{1}{\sqrt{2}}(-\hat{\mathbf{i}}-\hat{\mathbf{j}}) \\ & = \frac{1}{\sqrt{2}} (4x+2y) \end{aligned}

At point (30,\, -20,\, 800),

\begin{aligned} h_{\hat{\mathbf{n}}}'(30,-20) & = \frac{1}{\sqrt{2}}\big( 4(30)+2(-20)\big) \\ & = \frac{1}{\sqrt{2}}\cdot 80 \qquad (>0) \end{aligned}

he will ascend southwesterly.

202104181519 Homework 1 (Q4)

i. Find the infinitesimal small vector \mathbf{dr} in the cylindrical coordinate induced by an infinitesimal small changes of \mathrm{d}\rho, \mathrm{d}\theta, and \mathrm{d}z in terms of \rho, \theta, z, \mathrm{d}\rho, \mathrm{d}\theta, \mathrm{d}z and the corresponding unit vector.

ii. f(u_1, u_2, u_3) is defined in \mathbf{r}=(u_1, u_2, u_3) coordinate. Its gradient is defined

\displaystyle{\lim_{\Delta l_i\to 0}\sum_{i=1}^{3}\frac{\Delta f_i}{\Delta l_i}\hat{\mathbf{u}}_l}

where \Delta l_i and \Delta f_i are respectively the changes in length and functional value induced purely by the infinitesimal change in u_i. \hat{\mathbf{u}}_l is the unit vector of \mathbf{u}_i. Thus find the gradient of f in cylindrical coordinate.


Solution.

(The solution below is based on the manuscript of 2015-2016 PHYS2155 Methods of Physics II Homework Solutions.)

i.

\mathbf{dr}=\mathrm{d}\rho\,\hat{\boldsymbol{\rho}}+\rho\,\mathrm{d}\theta\,\hat{\boldsymbol{\theta}}+\mathrm{d}z\,\hat{\mathbf{z}}

Compare to the figure below.

ii.

\begin{aligned} \nabla f & = \lim_{\Delta l_i\to 0}\sum_{i=1}^{3}\frac{\Delta f_i}{\Delta l_i}\hat{\mathbf{u}_i} \\ & = \lim_{\Delta\rho\to 0} \frac{\Delta f_\rho}{\Delta \rho}\,\hat{\boldsymbol{\rho}} + \lim_{\Delta\theta\to 0} \frac{\Delta f_\theta}{\rho\Delta\theta}\,\hat{\boldsymbol{\theta}} + \lim_{\Delta z\to 0}\frac{\Delta f_z}{\Delta z}\,\hat{\mathbf{z}} \\ & = \frac{\partial f}{\partial \rho}\,\hat{\boldsymbol{\rho}} + \frac{1}{\rho}\frac{\partial f}{\partial \theta}\,\hat{\boldsymbol{\theta}} + \frac{\partial f}{\partial z}\,\hat{\mathbf{z}} \end{aligned}

202104162147 Homework 1 (Q2)

The angle a of a triangle ABC is increasing at a rate of 3\,\mathrm{^\circ\, s^{-1}}, the side of AB is increasing at a rate of 1\,\mathrm{cm\, s^{-1}}, and the side of AC is decreasing at a rate of 2\,\mathrm{cm\, s^{-1}}. How fast is the side BC changing when a=30^\circ, AB=10\,\mathrm{cm}, and AC=24\,\mathrm{cm}? Is the length of BC increasing or decreasing?


Solution.

Draw a figure below:


Rephrase the problem.

Given that
\begin{aligned} \frac{\mathrm{d}a}{\mathrm{d}t} & = + 3\,\mathrm{^\circ\, s^{-1}} \\ \frac{\mathrm{d}x}{\mathrm{d}t} & = + 1\,\mathrm{cm\, s^{-1}} \\ \frac{\mathrm{d}y}{\mathrm{d}t} & = -2\,\mathrm{cm\, s^{-1}} \end{aligned}
If a=30^\circ, x=10\,\mathrm{cm}, and y=24\,\mathrm{cm},
then \displaystyle{\frac{\mathrm{d}z}{\mathrm{d}t}=\enspace ?}


By cosine law,

z^2=x^2+y^2-2xy\cos a.

Taking ordinary derivatives w.r.t. time t,

\displaystyle{2z\frac{\mathrm{d}z}{\mathrm{d}t} = 2x\frac{\mathrm{d}x}{\mathrm{d}t} + 2y\frac{\mathrm{d}y}{\mathrm{d}t} + 2xy\sin a\frac{\mathrm{d}a}{\mathrm{d}t} - 2x\cos a\frac{\mathrm{d}y}{\mathrm{d}t} - 2y\cos a\frac{\mathrm{d}x}{\mathrm{d}t}}


\begin{aligned} z & =\sqrt{x^2+y^2-2xy\cos a} \\ & = \sqrt{(10)^2+(24)^2-2(10)(24)\cos 30^\circ} \\ & = 16.1341\qquad (4\,\mathrm{d.p.}) \end{aligned}


Plugging in the value of each,

\displaystyle{2(\cdot\cdot )\frac{\mathrm{d}z}{\mathrm{d}t} = 2(\cdot\cdot )\big(\cdot\cdot \big)+2(\cdot\cdot )\big(\cdot\cdot \big)+2(\cdot\cdot )(\cdot\cdot )\sin (\cdot\cdot )\big(\cdot\cdot \big) - 2(\cdot\cdot )\cos (\cdot\cdot )\big(\cdot\cdot \big) - 2(\cdot\cdot )\cos (\cdot\cdot )\big(\cdot\cdot \big)}

you will know what \displaystyle{\frac{\mathrm{d}z}{\mathrm{d}t}} is.


But now, I intend to treat it with partial derivatives.

Let f(x,y,a) = x^2+y^2-2xy\cos a = z^2.

\begin{aligned} \frac{\mathrm{d}f}{\mathrm{d}t} & = \frac{\partial f}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial f}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}t} + \frac{\partial f}{\partial a}\frac{\mathrm{d}a}{\mathrm{d}t} \\ & = (2x-2y\cos a)\frac{\mathrm{d}x}{\mathrm{d}t} + (2y-2x\cos a)\frac{\mathrm{d}y}{\mathrm{d}t} + 2xy\sin a\frac{\mathrm{d}a}{\mathrm{d}t} \\ \end{aligned}

After \displaystyle{\frac{\mathrm{d}f}{\mathrm{d}t}} is sought, recognise that

\begin{aligned} \frac{\mathrm{d}f}{\mathrm{d}t} & =2z\frac{\mathrm{d}z}{\mathrm{d}t} \\ \frac{\mathrm{d}z}{\mathrm{d}t} & = \bigg(\frac{1}{2z}\bigg)\frac{\mathrm{d}f}{\mathrm{d}t} \end{aligned}

you could have it also.


(to be continued)

202010132314 Homework 1 (Q1)

The radius r of a right circular cylinder is decreasing at a rate of 12\,\mathrm{cm\, s^{-1}}, while its height h is decreasing at a rate of 25\,\mathrm{cm\, min^{-1}}. How is the volume changing when r=180\,\mathrm{cm} and h=500\,\mathrm{cm}? Is the volume increasing or decreasing?


Solution.

The volume of a right circular cylinder is calculated by the formula

V=\pi r^2h.

The volume V (a dependent variable) of a cylinder varies with its radius r and height h (both independent variables). The change of volume, simply put it, is a derivative of volume V with respect to time t:

\displaystyle{\frac{\mathrm{d}V}{\mathrm{d}t}}.

Differentiate V(r,h,t) wrt. time t:

\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} V(r,h,t) & = \frac{\mathrm{d}}{\mathrm{d}t} (\pi r^2 h) \\ & = \pi \frac{\mathrm{d}}{\mathrm{d}t} (r^2h) \\ & = \pi \bigg[ r^2 \frac{\mathrm{d}}{\mathrm{d}t}(h) + h \frac{\mathrm{d}}{\mathrm{d}t} (r^2) \bigg] \\ & = \pi \bigg[ \big( r(t) \big)^2 \frac{\mathrm{d}}{\mathrm{d}t}\big( h(t) \big) + \big( h(t)\big) \bigg( \frac{\mathrm{d}}{\mathrm{d}t}\big( r(t) \big)^2  \bigg)   \bigg] \\ & = \pi (r^2h' +2hrr' ) \\ & = \pi r^2h' + 2\pi hrr' \\ \end{aligned}

Given r=180\,\mathrm{cm}, h=500\,\mathrm{cm}, r'=-12\,\mathrm{cm\, s^{-1}}=-720\,\mathrm{cm\, min^{-1}}, and h'=-25\,\mathrm{cm\, min^{-1}}, you would have it.


In some formalism of partial derivatives,

\begin{aligned} \frac{\mathrm{d}V(r,h)}{\mathrm{d}t} & = \frac{\partial V}{\partial r}\frac{\mathrm{d}r}{\mathrm{d}t} + \frac{\partial V}{\partial h}\frac{\mathrm{d}h}{\mathrm{d}t} \\ & = (2\pi hr)\frac{\mathrm{d}r}{\mathrm{d}t} + (\pi r^2)\frac{\mathrm{d}h}{\mathrm{d}t}\\ & = 2\pi hrr' +\pi r^2h' \\ \end{aligned}

you could have it also.

Afterthought.

It just so happens that there are two lines of attack, by taking total/ordinary derivatives and by taking partial derivatives. Is here anyhow the difference? Is there anything the matter?

202010130604 Example 1, Chapter 1.1, Methods in Physics II (2015-2016 Lectures)

Find the trajectory of a cannon ball fired by a cannoneer at 45^\circ above his eye level with an initial speed v.


Ans.

Imagine you are in his place, like the picture below:

Then, suppose you are opening fire at such positive \textrm{(+ve)\enspace }x-axis direction as that follows along the meridian. In addition, assume that the earth is to be lying flat beneath the cannon ball during its flight, that every pole (z-axis) upheld would be so much right-angled (/normal /perpendicular) to the ground as parallel (-transported) anywhere.

We neglect air friction.

1. Along the x-direction, the speed is kept v\cos 45^\circ.

2. Along the z-direction, the speed is initially v\sin 45^\circ. By the laws of gravity, the cannon ball will experience a net force m\mathbf{g} due to gravitational pull by the Earth. If upward direction is taken the positive sign, an equation of motion due to the Galilean transformation (i.e., v=u+at) will depict that v_z(t)=v\sin 45^\circ -gt.

3. One another equation s(t)=ut+\displaystyle{\frac{1}{2}}at^2 depicts how distance s (i.e., the magnitude of displacement \mathbf{s}) varies with time t during linear motion in constant acceleration a.

One might have already noticed I am setting the original question aside, as it were. Let’s pinpoint the answer now.

The trajectory should be obtained in the form:

\mathbf{s}(t)=s_x(t)\,\hat{\mathbf{i}} + s_z(t)\,\hat{\mathbf{k}}.

where

\begin{aligned} s_x(t) & = u_x t+\frac{1}{2}a_xt^2 \\ & = (v\cos 45^\circ )\, t + \frac{1}{2}(0)(t^2) \\ & = (v\cos 45^\circ )\, t \\ \end{aligned}

and

\begin{aligned} s_z(t) & = u_zt + \frac{1}{2}a_zt^2 \\ & = (v\sin 45^\circ )\, t + \frac{1}{2}(-g)(t^2) \\ \end{aligned}