A right pyramid,
high, stands on a rectangular base
by
. Calculate (a)
the length of an edge of the pyramid; (b)
the angles the triangular faces made with the base; (c)
the volume of the pyramid.
Extracted from A. Godman & J. F. Talbert. (1973). Additional Mathematics Pure and Applied in SI Units.
Roughwork.
Commit my visualization to drawing.
A right pyramid is a pyramid where the base is circumscribed about the circle and the altitude of the pyramid meets at the circle’s center.
Wikipedia on Pyramid (geometry)

The pyramid above has a polygonal base, here the rectangle
, and an apex
, here the common vertex of triangles
,
,
, and
. The altitude is based on the origin
. To suit our coordinates to this problem, we write


such that

For the edges of its base, write

and for, the lateral, edge
:

edge
:

edge
:

and edge
:

For lateral surface
enclosed by edges
,
, and
, write
![Rendered by QuickLaTeX.com A(x,y,z):\begin{cases} (x,y,z)\in [0,3]\times [-5,5]\times [0,12] \\ \textrm{s.t. }\displaystyle{\frac{|y|}{5}\leqslant \frac{x}{3}=1-\frac{z}{12}} \\ \end{cases}](https://physicspupil.com/wp-content/ql-cache/quicklatex.com-59d2f630b733430dc75304d173637862_l3.svg)

for lateral surface
by edges
,
, and
, write:
![Rendered by QuickLaTeX.com B(x,y,z):\begin{cases} (x,y,z)\in [-3,3]\times [0,5]\times [0,12] \\ \textrm{s.t. }\displaystyle{\frac{|x|}{3}\leqslant \frac{y}{5}=1-\frac{z}{12}} \\ \end{cases}](https://physicspupil.com/wp-content/ql-cache/quicklatex.com-f8db9d0cedb3ec91bd6288b8bee1475d_l3.svg)

for lateral surface
by edges
,
, and
, write:
![Rendered by QuickLaTeX.com C(x,y,z):\begin{cases} (x,y,z)\in [-3,0]\times [-5,5]\times [0,12] \\ \textrm{s.t. }\displaystyle{\frac{|y|}{5}\leqslant -\frac{x}{3}=1-\frac{z}{12}} \\ \end{cases}](https://physicspupil.com/wp-content/ql-cache/quicklatex.com-079c13efeb454ce6a635461d11dae48a_l3.svg)

for lateral surface
by edges
,
, and
, write:
![Rendered by QuickLaTeX.com D(x,y,z):\begin{cases} (x,y,z)\in [-3,3]\times [-5,0]\times [0,12] \\ \textrm{s.t. }\displaystyle{\frac{|x|}{3}\leqslant -\frac{y}{5}=1-\frac{z}{12}} \\ \end{cases}](https://physicspupil.com/wp-content/ql-cache/quicklatex.com-20b512cefd3f6a733132c75fa93316fc_l3.svg)

and for base
by edges
,
,
, and
:

write

This problem is not to be attempted.