202211221415 Exercise 29.4.1

Use this fact, that the difference between a vacuum energy density \rho_v and \rho_m or \rho_r is that \rho_v does not change as the universe expands (though it may change for other physical reasons), the basic Friedman equation Eq. (29.13):

\displaystyle{\dot{a}^2-\frac{8\pi G}{3}(\rho_m+\rho_r+\rho_v)a^2=K}

with K=0, and the assumption of vacuum dominance (\rho_m=\rho_r\approx 0) to show that Eq. (29.9):

a(t)=a(t_s)\exp \Big(\sqrt{\frac{8}{3}\pi G\rho_v}(t-t_s)\Big).

This form of the equation is valuable because it no longer refers to the present state of the universe.

Extracted from Thomas A. Moore. (2013). A General Relativity Workbook.


Roughwork.

This solution is not mine. It was found on the Internet some years ago, to whose author(s) I lost references.

\begin{aligned} 0 & = \dot{a}^2-\frac{8\pi G}{3}\rho_va^2\\ \bigg(\frac{\mathrm{d}a}{\mathrm{d}t}\bigg)^2 & = \frac{8\pi G}{3}\rho_va^2 \\ \frac{1}{a}\frac{\mathrm{d}a}{\mathrm{d}t} & = \sqrt{\frac{8\pi G}{3}\rho_v} \\ \ln \big( a(t)\big) & = \bigg(\sqrt{\frac{8\pi G}{3}\rho_v}\bigg)\cdot t + C \\ a(t)& =a(t_s)\exp \bigg(\sqrt{\frac{8}{3}\pi G\rho_v}(t-t_s)\bigg) \\ \end{aligned}

201903030616 Exercise 17.2.1

Let \mathbf{A} and \mathbf{B} be arbitrary vector field and covariant vector field.

Following Eq. (17.17), the scalar product A^\mu B_{\mu} upon absolute differentiation is by definition:

\begin{aligned} \nabla_\alpha (A^\mu B_{\mu}) & = (\nabla_\alpha A^\mu )B_\mu + A^\mu (\nabla_\alpha B_\mu ) \\ & = \bigg( \displaystyle{\frac{\partial A^{\mu}}{\partial x^\alpha}} +\Gamma^{\mu}_{\alpha\nu} A^\nu  \bigg) B_\mu + A^\mu (\nabla_\alpha B_\mu ) \end{aligned}

On the other hand, following Eq. (17.18),

\begin{aligned} \nabla_\alpha (A^\mu B_\mu ) & =\partial_\alpha (A^\mu B_\mu ) \\ & = \displaystyle{\frac{\partial A^\mu}{\partial x^\alpha}}B_\mu + A^\mu \displaystyle{\frac{\partial B_\mu}{\partial x^\alpha}} \end{aligned}.

Equating Eq. (17.17) with Eq. (17.18):

\begin{aligned} \bigg( \displaystyle{\frac{\partial A^{\mu}}{\partial x^\alpha}} +\Gamma^{\mu}_{\alpha\nu} A^\nu  \bigg) B_\mu + A^\mu (\nabla_\alpha B_\mu )  & = \displaystyle{\frac{\partial A^\mu}{\partial x^\alpha}}B_\mu + A^\mu \displaystyle{\frac{\partial B_\mu}{\partial x^\alpha}} \\ \Gamma^\mu_{\alpha\nu}A^\nu B_\mu + A^\mu (\nabla_\alpha B_\mu )  & = A^\mu \displaystyle{\frac{\partial B_\mu}{\partial x^\alpha}} \\ A^\mu (\nabla_\alpha B_\mu ) & = A^\mu \displaystyle{\frac{\partial B_\mu}{\partial x^\alpha}} - \Gamma^\mu_{\alpha\nu} A^\nu B_\mu \\ A^\mu (\nabla_\alpha B_\mu ) & = A^\mu \displaystyle{\frac{\partial B_\mu}{\partial x^\alpha}} - \Gamma^\nu_{\alpha\mu} A^\mu B_\nu \\ \nabla_\alpha B_\mu & = \displaystyle{\frac{\partial B_\mu}{\partial x^\alpha}} - \Gamma^\nu_{\alpha\mu}B_\nu \end{aligned}

I have proven Eq. (17.7).

201903030450 Exercise 9.1.1

The Schwarzschild metric is given by Eq. (9.3):

\mathrm{d}s^2=-\bigg( 1-\displaystyle{\frac{r_s}{r}} \bigg) \mathrm{d}t^2+\bigg( 1-\displaystyle{\frac{r_s}{r}} \bigg)^{-1}\,\mathrm{d}r^2+r^2\,\mathrm{d}\theta +r^2\sin^2\theta\,\mathrm{d}\phi^2

whereas the metric for spherical coordinates in flat spacetime is given by Eq. (9.2):

\mathrm{d}s^2=-\mathrm{d}t^2+\mathrm{d}r^2+r^2\,\mathrm{d}\theta^2+r^2\sin^2\theta\,\mathrm{d}\phi^2

Along a purely radial worldline \mathrm{d}t=0, \mathrm{d}\theta =0 and \mathrm{d}\phi =0, of the Schwarzschild metric will become

\mathrm{d}s^2=\bigg( 1-\displaystyle{\frac{r_s}{r}} \bigg)^{-1}\,\mathrm{d}r^2.

Now that the Schwarzschild radius r_s is 2GM, there is Eq. (9.15):

\mathrm{d}s=\displaystyle{\frac{\mathrm{d}r}{\sqrt{1-2GM/r}}}.

The total radial distance between two events differing only by r-coordinates, i.e., r_A and r_B is calculated by definite integration, given by Eq. (9.16):

\Delta s=\displaystyle{\int \mathrm{d}s=\int_{r_A}^{r_B}\frac{\mathrm{d}r}{\sqrt{1-2GM/r}}}

Trying binomial approximation:

(1+x)^n =1+nx+\displaystyle{\frac{n(n-1)}{2!}}x^2 +\displaystyle{\frac{n(n-1)(n-2)}{3!}}x^3+O(x^4)

then,

\begin{aligned} &\quad\enspace (1-2GM/r)^{-\frac{1}{2}} \\ & =1+\bigg(-\frac{1}{2}\bigg)(-2GM/r) +\displaystyle{\frac{(-\frac{1}{2})(-\frac{1}{2}-1)}{2!}}(-2GM/r)^2+O(r^2) \\ \end{aligned}

Considering only first-order approximation:

1+\displaystyle{\frac{GM}{r}}.

Upon integration, there is Eq. (9.17):

\begin{aligned} \Delta s & \approx \displaystyle{\int_{r_A}^{r_B}}\bigg( 1+\displaystyle{\frac{GM}{r}}\bigg) \,\mathrm{d}r \\ & = \bigg[ r+GM\ln \bigg( \displaystyle{\frac{r_B}{r_A}} \bigg)  \bigg]\bigg|_{r_A}^{r_B} \\ & = (r_B-r_A) + GM\ln \bigg( \frac{r_B}{r_A} \bigg) \end{aligned}

201903030435 Exercise 14.1.4

Check that the physical distance from r=3GM to r=2GM is indeed 3.05GM. (If your calculator cannot handle inverse hyperbolic functions, use equation 14.11 to eliminate \tanh^{-1}u.)


Eq. (14.3):

\Delta s=R\sqrt{1-2GM/R}+2GM\tanh^{-1}\sqrt{1-2GM/R}

and the identity given by Eq. (14.11):

\tanh^{-1}u=\displaystyle{\frac{1}{2}\ln \bigg| \frac{1+u}{1-u} \bigg|}

are combined to give the following

\begin{aligned} \Delta s(r) & =r\sqrt{1-2GM/r}+GM\ln \bigg| \displaystyle{\frac{1+u}{1-u}} \bigg| \\ & =r\sqrt{1-2GM/r}+GM\ln \Bigg(\Bigg| \displaystyle{\frac{1+\sqrt{1-2GM/R}}{1-\sqrt{1-2GM/R}}}\Bigg| \Bigg) \\ \end{aligned}

which measures the physical distance \Delta s from the event horizon r=2GM.

Now that r=3GM, the physical distance will be

\begin{aligned} \Delta s(3GM) & =(3GM)\sqrt{\displaystyle{1-\frac{2GM}{(3GM)}}}+GM\ln \Bigg| \frac{1+\sqrt{1-\frac{2GM}{(3GM)}}}{1-\sqrt{1-\frac{2GM}{(3GM)}}}  \Bigg| \\ & = \sqrt{3} GM + 1.3169 GM \\ & \approx 3.05GM\qquad (\textrm{3 s.f.}) \end{aligned}

201903030417 Exercise 8.5.2

Eq. (8.41):

0=\displaystyle{\frac{\mathrm{d}^2\theta}{\mathrm{d}s^2}}-\sin\theta\cos\theta\bigg( \displaystyle{\frac{\mathrm{d}\phi}{\mathrm{d}s}} \bigg)^2

Eq. (8.42):

0=\displaystyle{\frac{\mathrm{d}}{\mathrm{d}s}}\bigg(\sin^2\theta \displaystyle{\frac{\mathrm{d}\phi}{\mathrm{d}s}}\bigg)

Integrating on Eq. (8.42) gives Eq. (8.43):

\sin^2\theta \displaystyle{\frac{\mathrm{d}\phi}{\mathrm{d}s}}=\textrm{Const.}\equiv \displaystyle{\frac{c}{R}}\Rightarrow \displaystyle{\frac{\mathrm{d}\phi}{\mathrm{d}s}=\frac{R}{\sin^2\theta}}.

The definition of pathlength along the curve is given by Eq. (8.16):

g_{\mu\nu}\displaystyle{\frac{\mathrm{d}x^\mu}{\mathrm{d}s}} \displaystyle{\frac{\mathrm{d}x^\nu}{\mathrm{d}s}} = + \bigg( \displaystyle{\frac{\mathrm{d}s}{\mathrm{d}s}} \bigg) = +1.

Previously to Exercise 8.5.2., the metric tensor is given by Eq. (8.40):

g_{\mu\nu}=\begin{bmatrix} R^2 & 0 \\ 0 & R^2\sin^2\theta \end{bmatrix}.

Eq. (8.45) begins:

\begin{aligned} 1 & = R^2\bigg( \displaystyle{\frac{\mathrm{d}\theta}{\mathrm{d}s }}   \bigg)^2 +R^2\sin^2\theta \bigg( \displaystyle{\frac{\mathrm{d}\phi}{\mathrm{d}s}}   \bigg)^2 \\ 1 & =  R^2\bigg( \displaystyle{\frac{\mathrm{d}\theta}{\mathrm{d}s }}   \bigg)^2 +R^2\sin^2\theta \bigg( \displaystyle{\frac{c}{R\sin^2\theta}}  \bigg)^2 \\ 1 & = R^2\bigg( \displaystyle{\frac{\mathrm{d}\theta}{\mathrm{d}s}} \bigg)^2 + \displaystyle{\frac{c^2}{\sin^2\theta}} \\ \bigg( \displaystyle{\frac{\mathrm{d}\theta}{\mathrm{d}s}} \bigg)^2 & = \displaystyle{\frac{1}{R^2}\bigg( 1-\frac{c^2}{\sin^2\theta} \bigg)} \\ \displaystyle{\frac{\mathrm{d}\theta}{\mathrm{d}s}} & = \pm \displaystyle{\frac{1}{R}\sqrt{1-\frac{c^2}{\sin^2\theta}}} \\ & = \pm \displaystyle{\frac{1}{R\sin\theta}}\sqrt{\sin^2\theta -c^2} \end{aligned}

and this is Eq. (8.46).

201903030411 Exercise 4.3.1

Write out the implied sum in \mathrm{d}p^\mu /\mathrm{d}\tau =qF^{\mu\nu}\eta_{\nu\alpha}u^\alpha for \mu =x and show that it is equivalent to the x component of equation (4.22) at low velocities.


Eq. (4.22):

\mathbf{F}_{\mathrm{em}}=q(\mathbf{E}+\mathbf{v}\times \mathbf{B})

Eq. (4.15):

\displaystyle{\frac{\mathrm{d}p^\mu}{\mathrm{d}\tau}}=qF^{\mu\nu}\eta_{\nu\alpha}u^\alpha

the electromagnetic field tensor F^{\mu\nu} of which is given by Eq. (4.14):

\begin{bmatrix} F^{tt} & F^{tx} & F^{ty} & F^{tz} \\ F^{xt} & F^{xx} & F^{xy} & F^{xz} \\ F^{yt} & F^{yx} & F^{yy} & F^{yz} \\ F^{zt} & F^{zx} & F^{zy} & F^{zz}  \end{bmatrix} = \begin{bmatrix} 0 & E_x & E_y & E_z \\ -E_x & 0 & B_z & -B_y \\ -E_y & -B_z & 0 & B_x  \\ -E_z & B_y & -B_x & 0 \end{bmatrix}

and the Minkowski metric tensor \eta_{\nu\alpha} of which is given by Eq. (4.6):

\begin{bmatrix} \eta_{tt} & \eta_{tx} & \eta_{ty} & \eta_{tz} \\ \eta_{xt} & \eta_{xx} & \eta_{xy} & \eta_{xz} \\ \eta_{yt} & \eta_{yx} & \eta_{yy} & \eta_{yz} \\ \eta_{zt} & \eta_{zx} & \eta_{zy} & \eta_{zz}  \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1  \end{bmatrix}


In the case \mu =x, beginning with Eq. (4.15):

\begin{aligned} \displaystyle{\frac{\mathrm{d}p^x}{\mathrm{d}\tau}} & =qF^{x\nu}\eta_{\nu\alpha}u^\alpha \\ & = q \big( F^{xt}\eta_{t\alpha}u^\alpha + F^{xx}\eta_{x\alpha}u^\alpha + F^{xy}\eta_{y\alpha}u^\alpha + F^{xz}\eta_{z\alpha}u^\alpha  \big) \\ & = q \big( -E_x \eta_{tt} u^t + (0)(\eta_{xx})(u^x) + B_{z}\eta_{yy}u^y -B_y\eta_{zz}u^z \big) \\ \dots\, & \textrm{when }v\ll c\textrm{, }u^t\approx 1\textrm{, }u^x\approx v_x\textrm{, }u^y\approx v_y\textrm{, and }u^z\approx v_z\,\dots \\ & = q\big( (-E_x)(-1)(1) + (B_z)(1)(v_y) - (B_y)(1)(v_z)\big) \\ & = q(E_x + B_{z}v_{y} - B_{y}v_{z}) \\ & = q(\mathbf{E}+\mathbf{v}\times\mathbf{B})_x \\ & = \mathbf{F}_{\mathrm{em},\,x}\end{aligned}