202401301506 Solution to 2000-CE-PHY-II-28

Two insulated uncharged metal spheres X and Y are placed in contact. A positively-charged rod is brought near X as shown below. X is then earthed momentarily. The charged rod is removed and the two spheres are then separated. Describe the charges on X and Y. (modified)


Roughwork.

Have some mental pictures (*make drawings if you don’t have ample RAM).

First, when a positively-charged rod is brought near X, charges are induced:

Notice that on surface areas X and Y making contact, as boxed below:

the net charge is zero, Q=0. Hence, the plus and the minus signs (representing positive and negative charges) are erased from the drawing:

Then, X is earthed momentarily:

it is convenient to treat the two spheres X and Y as one body X+Y:

The process of earthing enables a transfer of negative free charges (electrons being the carrier) unidirectionally between two bodies:

here from the earth to the body, but no reversed (why?); the plus and minus signs, as boxed below:

should cancel off each other, and are thus erased from the drawing:

once the charged rod is removed:

the negative charges will be redistributed over X+Y such that the electrostatic repulsive forces between them are kept to a minimum:

after the two spheres are separated,

both spheres X and Y will be negative charged. The descriptions go complete.


This problem is not to be attempted.

202312191041 Electrostatics Diagrams (Elementary) Q1

The blogger claims no originality of his problem below.

We have an arrangement of three positive (point) charges +Q_{A}, +Q_{B}, and +Q_{C} of the same quantity (=Q), as if lying in the vertices A, B, and C of an equilateral triangle \triangle ABC, where \mathbf{r}_{BA}, \mathbf{r}_{AC}, and \mathbf{r}_{CB} are the same magnitude r.

Intuitively, these three like charges are \textrm{\scriptsize{NOT}} in electrostatic equilibrium for acting between them are \textrm{\scriptsize{NET}} repulsive forces, not until we place a negative (point) charge -q of some yet unknown quantity q in the centre O, pointing to which some attractive forces of yet also unknown magnitudes.

Express q in terms of Q and r.


Setup.

\begin{aligned} |\mathbf{r}_{BA}| & = |\mathbf{r}_{AC}| = |\mathbf{r}_{CB}| = r \\ |\mathbf{r}'_{A}| & = |\mathbf{r}'_{B}| = |\mathbf{r}'_{C}| = \frac{\sqrt{3}}{3}r \\ \mathbf{r}_{BA} & = \mathbf{r}'_{A} - \mathbf{r}'_{B} \\ \mathbf{r}_{AC} & = \mathbf{r}'_{C} - \mathbf{r}'_{A} \\ \mathbf{r}_{CB} & = \mathbf{r}'_{B} - \mathbf{r}'_{C} \\ \text{}_{B}\mathbf{F}_{A} & = \text{}_{B}F_{A}\,\hat{\mathbf{r}}_{BA} \\ \text{}_{C}\mathbf{F}_{A} & = -\text{}_{C}F_{A}\,\hat{\mathbf{r}}_{AC} \\ \text{}_{C}\mathbf{F}_{B} & = \text{}_{C}F_{B}\,\hat{\mathbf{r}}_{CB} \\ \text{}_{A}\mathbf{F}_{B} & = -\text{}_{A}F_{B}\,\hat{\mathbf{r}}_{BA} \\ \text{}_{A}\mathbf{F}_{C} & = \text{}_{A}F_{C}\,\hat{\mathbf{r}}_{AC} \\ \text{}_{B}\mathbf{F}_{C} & = -\text{}_{B}F_{C}\,\hat{\mathbf{r}}_{CB} \\ \text{}_{B}F_{A} & = |\text{}_{B}\mathbf{F}_{A}| = F \\ \text{}_{C}F_{A} & = |\text{}_{C}\mathbf{F}_{A}| = F \\ \text{}_{C}F_{B} & = |\text{}_{C}\mathbf{F}_{B}| = F \\ \text{}_{A}F_{B} & = |\text{}_{A}\mathbf{F}_{B}| = F \\ \text{}_{A}F_{C} & = |\text{}_{A}\mathbf{F}_{C}| = F \\ \text{}_{B}F_{C} & = |\text{}_{B}\mathbf{F}_{C}| = F \\ \mathbf{F}_{A} & = \text{}_{B}\mathbf{F}_{A} + \text{}_{C}\mathbf{F}_{A} \\ \mathbf{F}_{B} & = \text{}_{C}\mathbf{F}_{B} + \text{}_{A}\mathbf{F}_{B} \\ \mathbf{F}_{C} & = \text{}_{A}\mathbf{F}_{C} + \text{}_{B}\mathbf{F}_{C} \\ \mathbf{F}_{A} & = F_{A}\,\hat{\mathbf{r}}'_{A} \\ \mathbf{F}_{B} & = F_{B}\,\hat{\mathbf{r}}'_{B} \\ \mathbf{F}_{C} & = F_{C}\,\hat{\mathbf{r}}'_{C} \\ F_{A} & = |\mathbf{F}_{A}| = F' \\ F_{B} & = |\mathbf{F}_{B}| = F' \\ F_{C} & = |\mathbf{F}_{C}| = F' \\ \end{aligned}

Write, by Coulomb’s law,

\begin{aligned} F & = k\frac{(Q)(Q)}{(r)^2} \\ & = k\frac{Q^2}{r^2} \\ \end{aligned}

such that

\begin{aligned} \text{}_{B}\mathbf{F}_{A} & = F\cos 60^\circ\,\hat{\mathbf{i}} + F\sin 60^\circ\,\hat{\mathbf{j}} \\ & = \bigg( k\frac{Q^2}{r^2}\bigg) \bigg(\frac{1}{2}\bigg) \,\hat{\mathbf{i}} + \bigg( k\frac{Q^2}{r^2}\bigg) \bigg(\frac{\sqrt{3}}{2}\bigg) \,\hat{\mathbf{j}} \\ \text{}_{C}\mathbf{F}_{A} & = -F\cos 60^\circ\,\hat{\mathbf{i}} + F\sin 60^\circ\,\hat{\mathbf{j}} \\ & = -\bigg( k\frac{Q^2}{r^2}\bigg) \bigg(\frac{1}{2}\bigg) \,\hat{\mathbf{i}} + \bigg( k\frac{Q^2}{r^2}\bigg) \bigg(\frac{\sqrt{3}}{2}\bigg) \,\hat{\mathbf{j}} \\ \mathbf{F}_{A} & = \text{}_{B}\mathbf{F}_{A} + \text{}_{C}\mathbf{F}_{A} \\ & = 0\,\hat{\mathbf{i}} + \bigg( k\frac{Q^2}{r^2}\bigg)(\sqrt{3})\,\hat{\mathbf{j}} \\ F' & = |\mathbf{F}_A| \\ & = \bigg( k\frac{Q^2}{r^2}\bigg)(\sqrt{3}) \\ \end{aligned}

and

\begin{aligned} F' & = k\frac{(Q)(q)}{(\sqrt{3}r/3)^2} \\ \bigg( k\frac{Q^2}{r^2}\bigg) (\sqrt{3}) & = \bigg( k\frac{Qq}{r^2}\bigg) (3)\\ q & = \frac{\sqrt{3}}{3} Q \\ \end{aligned}

\therefore We should put a negative charge -q of quantity \sqrt{3}Q/3 in order for the system to reach electrostatic equilibrium.


This problem is not to be attempted.