202302101153 Exercise 26.2

If required take g=9.8\,\mathrm{m\,s^{-2}}.

1. Two trucks, masses 30\,\mathrm{kg} and 20\,\mathrm{kg}, travelling at 6\,\mathrm{m\,s^{-1}} and 2\,\mathrm{m\,s^{-1}} respectively in the same direction, collide and continue together. Find the loss of KE due to the collision, and the percentage loss of energy.
2. Two masses, of 3\,\mathrm{kg} and 2\,\mathrm{kg}, move towards each other at speeds 2\,\mathrm{m\,s^{-1}} and 1\,\mathrm{m\,s^{-1}} respectively. After colliding they move together. Find the percentage loss of energy in the collision.
3. A force of 2\,\mathrm{N} is applied for 5\,\mathrm{s} to a mass of 2\,\mathrm{kg} resting on a smooth horizontal surface. The mass now collides with a second mass of 3\,\mathrm{kg} at rest, and they continue together. Find the common velocity and the loss of KE in the impact.

Extracted from A. Godman & J. F. Talbert. (1975). Additional Mathematics Pure and Applied in SI Units.


Roughwork.

1.

\begin{aligned} m_1u_1+m_2u_2 & = (m_1+m_2)v \\ (30)(6) + (20)(2) & = (30+20)v \\ v& = 4.4\,\mathrm{m\,s^{-1}}\\ \end{aligned}

\begin{aligned} \textrm{KE}_\textrm{initial} & = \frac{1}{2}(30)(6)^2 + \frac{1}{2}(20)(2)^2 = 580\,\mathrm{J} \\ \textrm{KE}_\textrm{final} & = \frac{1}{2}(30+20)(4.4)^2 = 484\,\mathrm{J}\\ \Delta\textrm{KE} & =  -96\,\mathrm{J}\\ \end{aligned}

2. Not to be attempted.

3.

\begin{aligned} F_{\textrm{net}} & = \frac{\Delta p}{\Delta t} \\ 2 & = \frac{(2)(v-0)}{5} \\ v & = 5\,\mathrm{m\,s^{-1}} \\ \end{aligned}

\begin{aligned} m_1u_1+m_2u_2 & = (m_1+m_2)v \\ (2)(5)+(3)(0) & = (2+3)v \\ v & = 2\,\mathrm{m\,s^{-1}} \\ \end{aligned}

Not to be completed.

202302091224 Exercise 20.2

(All accelerations are to be taken as uniform and in a straight line.)

1. A particle starts with velocity 3\,\mathrm{m\,s^{-1}} and accelerates at 0.5\,\mathrm{m\,s^{-2}}. What is its velocity after i. 3\,\mathrm{s}, ii. 10\,\mathrm{s}, iii. t\,\mathrm{s}? How far has it travelled in these times?
2. A body, decelerating at 0.8\,\mathrm{m\,s^{-2}}, passes a certain point with a speed of 30\,\mathrm{m\,s^{-1}}. Find its velocity after 10\,\mathrm{s}, the distance covered in that time and how much further the body will go until it stops.
3. A particle travelling with acceleration of 0.75\,\mathrm{m\,s^{-2}} passes a point O with speed 5\,\mathrm{m\,s^{-1}}. How long will it take to cover a distance of 250\,\mathrm{m}? What will its speed be at that time?
4. If a particle passes a certain point with speed 5\,\mathrm{m/s} and is accelerating at 3\,\mathrm{m/s^{2}} how far will it travel in the next 2\,\mathrm{s}? How long will it take (from the start) to travel 44\,\mathrm{m}?
5. A body falls from rest with an acceleration of 10\,\mathrm{m\,s^{-2}}. What is its velocity 5\,\mathrm{s} afterwards? How far has it fallen by then?

Extracted from A. Godman & J. F. Talbert. (1975). Additional Mathematics Pure and Applied in SI Units.


Roughwork.

1.

\begin{aligned} v(t) & = u+at = 3 + 0.5t \\ v(3) & = 3+0.5(3) = 4.5\,\mathrm{m\,s^{-1}}\\ v(10) & = 3+0.5(10) = 8\,\mathrm{m\,s^{-1}} \\ \end{aligned}

\begin{aligned} s(t) & =ut+\frac{1}{2}at^2 = 3t+\frac{t^2}{4} \\ s(3) & = 3(3)+\frac{(3)^2}{4} = 11.25\,\mathrm{m}\\ s(10) & = 3(10)+\frac{(10)^2}{4} = 55\,\mathrm{m}\\ \end{aligned}

2.

Not to be attempted.

3.

\begin{aligned} s & = ut+\frac{1}{2}at^2 \\ (250) & = (5)t+\frac{1}{2}(0.75)t^2 \\ 0 & = 3t^2 + 40t - 2000 \\ 0 & = (3t+100)(t-20) \\ t & = 20\,\mathrm{s}\textrm{ \scriptsize{OR} }-\frac{100}{3}\,\mathrm{s}\textrm{ (rej.)} \\ \end{aligned}

\begin{aligned} v & = u+at \\ & = (5)+(0.75)(20) \\ & = 20\,\mathrm{m\,s^{-1}} \\ \end{aligned}

or,

\begin{aligned} v^2 & =u^2+2as \\ v & = \pm\sqrt{(5)^2+2(0.75)(250)} \\ & = 20\,\mathrm{m\,s^{-1}}\textrm{ \scriptsize{OR} }-20\,\mathrm{m\,s^{-1}}\textrm{ (rej.)} \\ \end{aligned}

4. Not to be attempted.

5. Not to be attempted.

202209281521 Problem 5.37

A bead can slide without friction on a circular hoop of radius R in a vertical plane. The hoop rotates at a constant rate of \omega about a vertical diameter, as shown in the figure below.

(a) Find the angle \theta at which the bead is in vertical equilibrium. (Of course it has a radial acceleration toward the axis.)
(b) Is it possible for the bead to “ride” at the same elevation as the centre of the hoop?
(c) What will happen if the hoop rotates at a slower rate \omega' = \omega /2?

Modified from H. D. Young. (1989). University Physics.


Roughwork.

(a)

Kinetic energy T:

\begin{aligned} T & = \frac{1}{2}mv^2 \\ \dots\enspace v & = r\omega \enspace\dots \\ T & = \frac{1}{2}mr^2\omega^2 \\ \dots\enspace r & = R\sin\theta \enspace\dots \\ T & = \frac{1}{2}mR^2\omega^2\sin^2\theta \\ \end{aligned}

Potential energy V:

\begin{aligned} V & = mg(R-R\cos\theta ) \\ & = mgR(1-\cos\theta ) \\ \end{aligned}

Lagrangian \mathcal{L}=T-V:

\displaystyle{\mathcal{L}=\frac{1}{2}mR^2\omega^2\sin^2\theta-mgR(1-\cos\theta )}

Euler–Lagrange equation:

\displaystyle{\frac{\mathrm{d}}{\mathrm{d}t}\bigg(\frac{\partial\mathcal{L}}{\partial \dot{\theta}}\bigg)-\frac{\partial\mathcal{L}}{\partial \theta}=0}

Thereby

\begin{aligned} \frac{\partial\mathcal{L}}{\partial\dot{\theta}} & = 0 \quad \textrm{and}\quad \frac{\mathrm{d}}{\mathrm{d}t}\bigg(\frac{\partial\mathcal{L}}{\partial\dot{\theta}}\bigg) = 0 \\ \frac{\partial\mathcal{L}}{\partial\theta} & = mR^2\omega^2\sin\theta\cos\theta -mgR\sin\theta \\ \end{aligned}

The bead is in vertical equilibrium when:

mR^2\omega^2\sin\theta\cos\theta -mgR\sin\theta =0

solving for \theta then :

\begin{aligned} 0 & = (mR\sin\theta )(R\omega^2\cos\theta -g) \\ \theta & = 0\enspace\textrm{ (rej.)}\quad\textrm{\scriptsize{OR}}\quad \cos^{-1}\bigg(\frac{g}{R\omega^2}\bigg) \\ \end{aligned}

(b)

\theta\to 90^\circ iff R\omega^2\gg g.

(c) This is left as an exercise to the reader.

202205311107 Problem 4.23

Boxes A and B are in contact on a horizontal, frictionless (i.e. f=0) surface, as shown in the Figure below. Box A has mass 20.0\,\mathrm{kg} and box B has mass 5.0\,\mathrm{kg}. A horizontal force of 100\,\mathrm{N} is exerted on box A. What is the magnitude of the force that box A exerts on box B?

extracted from Problem 4.23, Sears and Zemansky’s University Physics


Steps.

Draw the free-body diagrams of A, B, and A+B.

Apply Newton’s 2^\textrm{nd} law \textrm{Net }F=ma:

\begin{aligned} F_A- {}_{B}F_A - f_A & = m_Aa_A \\ {}_{A}F_B - f_B & = m_Ba_B \\ F_A-f_{A+B} & = m_{A+B}a_{A+B} \\ \end{aligned}

Conditioning the equations of motion:

\begin{aligned} a_A=a_B & =a_{A+B} \\ f_A=f_B=f_{A+B} & =0 \\ {}_{B}F_A & ={}_{A}F_{B} \\ m_A+m_B & =m_{A+B} \\ \end{aligned}

and substituting numbers for symbols, write:

\begin{aligned} 100 - {}_{A}F_{B} & = 20a \\ {}_{A}F_{B} & = 5a \\ 100 & =25a \\ \end{aligned}


\therefore The magnitude {}_{A}F_{B} of the force that box A exerts on box B is 20\,\mathrm{N}.

202201211321 Problem 1.1

Two particles move along the x-axis uniformly with speeds v_1=8\,\mathrm{m/s} and v_2=4\,\mathrm{m/s}. At the initial moment the first point was 21\,\mathrm{m} to the left of the origin and the second 7\,\mathrm{m} to the right of the origin. When will the first point catch up with the second? Where will this take place? Plot the graph of the motion.

Extracted from A. A. Pinsky. (1980). Problems in Physics.


Set-up.

Rename the two particles by a and b. The velocity of particle a is \mathbf{v}_a=+8\,\mathrm{(m\, s^{-1})}\enspace\hat{\mathbf{i}} and that of particle b is \mathbf{v}_b=+4\,\mathrm{(m\, s^{-1})}\enspace\hat{\mathbf{i}}. The particles at time t=0 are located on the x-axis with x-coordinates x_a=-21 and x_b=+7 respectively.


Roughwork.

When t=0:

when t=1:

when t=2:

when t=3:

when t=4:

when t=5:

when t=6:

when t=7:


Solution.

The positions x_a(t), x_b(t) of particle a, b can be expressed in a function of discrete time interval

t=\{ t_i\in\mathbb{Z^{+}}\textrm{ s.t. } t_{i+1}-t_{i}=t_{i}-t_{i-1}=1\},

i.e.,

\begin{aligned} x_a(t_{i+1}) & =x_a(t_{i})+8 \\ x_b(t_{i+1}) & =x_b(t_{i})+4 \\ \end{aligned}

or simply, in continuous time intervals,

\begin{aligned} x_a(t) & =-21+8t \\ x_b(t) & = 7+4t \\ \end{aligned}

Particle a will meet particle b when x_a(t)=x_b(t) at some time t', as

\begin{aligned} x_a(t') & = x_b(t') \\ -21+8t' & = 7+4t' \\ 4t' & = 28 \\ t' & = 7 \\ \end{aligned}

so the place of meeting is

x_a(7)=-21+8(7)=\boxed{35}=7+4(7)=x_b(7).

202112021037 Exercise 1.4 Lagrangian actions

For a free particle an appropriate Lagrangian is

Eq. (1.8):

\mathcal{L}(t,x,v)=\displaystyle{\frac{1}{2}mv^2}.

Suppose that x is the constant-velocity straight-line path of a free particle, such that x_a=x(t_a) and x_b=x(t_b). Show that the action on the solution path is

Eq. (1.9):

\displaystyle{\frac{m}{2}\frac{(x_b-x_a)^2}{t_b-t_a}}.

Extracted from Structure and Interpretation of Classical Mechanics, SICP, 2e


Background. (Lagrangians and Lagrangian actions)

The function \mathcal{L} is called a Lagrangian for the system, and the resulting action,

Eq. (1.4):

S[q](t_1,t_2)=\displaystyle{\int_{t_1}^{t_2}\mathcal{L}\circ\Gamma [q]},

is called the Lagrangian action. For Lagrangians that depend only on time, positions, and velocities the action can also be written

Eq. (1.5):

S[q](t_1,t_2)=\displaystyle{\int_{t_1}^{t_2}\mathcal{L}(t,q(t),\mathrm{D}q(t))\,\mathrm{d}t}.

(Section 1.3 The Principle of Stationary Action)


Working. (roughly)

\begin{aligned} S & = \int_{t_a}^{t_b}\frac{1}{2}mv^2\,\mathrm{d}t \\ & = \frac{m}{2}\int_{t_a}^{t_b}(\mathbf{v}\cdot\mathbf{v})\,\mathrm{d}t \\ & = \frac{m}{2}\int_{t_a}^{t_b}\bigg( \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}\cdot\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}\bigg) \,\mathrm{d}t \\ & = \frac{m}{2}\int_{x_a,t_a}^{x_b,t_b}\frac{(\mathrm{d}x)^2}{(\mathrm{d}t)} \\ & = \frac{m}{2}\frac{(x_b-x_a)^2}{t_b-t_a} \\ \end{aligned}

202104160754 Homework 1 (Q3)

A ship A, which can sail at a constant speed 60\,\mathrm{km/hr} to meet a second ship B which is 100\,\mathrm{km} away in the direction of \mathrm{S60^\circ W} and is sailing due east at constant speed 30\,\mathrm{km/hr}. Find the sailing direction of A and the time required to meet B.


Solution.

(The solution below is based on the manuscript of 2014-2015 PHYS1250 Fundamental Physics Homework Solutions.)

Draw a diagram as follows:


Setup.

\begin{aligned} v_A & = |\mathbf{v}_A| \\ v_B & = |\mathbf{v}_B| \\ \mathbf{v}_{AB} & = \mathbf{v}_A - \mathbf{v}_B \\ v_{AB} & = |\mathbf{v}_{AB}|= |\mathbf{v}_A - \mathbf{v}_B| \end{aligned}


By the law of sines,

\begin{aligned} \frac{V_A}{\sin 30^\circ} & = \frac{V_B}{\sin\theta} \\ \frac{60}{\sin 30^\circ} & = \frac{30}{\sin\theta} \\ \sin\theta & = 0.25 \\ \theta & = 14.5^\circ \end{aligned}

Direction of \mathbf{v}_A: \mathrm{S45.5^\circ W}


\because 180^\circ -30^\circ -14.5^\circ - 90^\circ = 45.5^\circ


Calculating v_{AB}:

\begin{aligned} |\mathbf{v}_{AB}| & = |\mathbf{v}_{A}|\cos\theta + |\mathbf{v}_{B}|\cos 30^\circ \\ & = 60 \cos 14.5^\circ + 30\cos 30^\circ \\ & = 84.1\,\mathrm{km/hr} \end{aligned}

The time needed to meet ship B is

\begin{aligned} t & = \frac{100\,\mathrm{km}}{|\mathbf{v}_{AB}|} \\ & = \frac{100\,\mathrm{km}}{84.1\,\mathrm{km/hr}} \\ & = 1.19\,\mathrm{hr} \end{aligned}

202104160620 Homework 1 (Q4)

A particle is projected from a point O on the horizontal floor. The range of the projectile is R and the maximum height that the particle can reach is h. Show that the equation of trajectory of the particle is

\displaystyle{\frac{y}{h}=\frac{4x}{R}\bigg( 1-\frac{x}{R}\bigg)}.


Solution.

(The solution below is based on the manuscript of 2014-2015 PHYS1250 Fundamental Physics Homework Solutions.)

The trajectory of projectile motion must be a parabola, which can be expressed in the form of a quadratic equation:

y=ax^2+bx+c;

And since the particle passes through the points (0,0) and (R,0), the equation of trajectory can be expressed in the form:

y=A(x-0)(x-R).

When the particle has traveled a horizontal distance x=\displaystyle{\frac{R}{2}}, it reaches the maximum height y=h.

Inserting the point (\frac{R}{2},h) into the trajectory equation, we solve for the unknown A:

\begin{aligned} h & = A\bigg(\frac{R}{2}-0\bigg)\bigg(\frac{R}{2}-R\bigg) \\ h & = -\frac{AR^2}{4} \\ \Rightarrow \qquad A & = -\frac{4h}{R^2} \end{aligned}

Thus,

y = -\displaystyle{\frac{4h}{R^2}}x(x-R),

or,

\boxed{\frac{y}{h} = \frac{4x}{R}\bigg( 1-\frac{x}{R}\bigg)}

202104150814 Homework 1 (Q2)

A particle is thrown with speed v_0 and an elevated angle \theta on the floor. The air resistance is negligible.

(a) During the flight, the following quantities are investigated. Determine whether the following items are constants.

i. \displaystyle{\frac{\mathrm{d}v}{\mathrm{d}t}}, where v is the speed of the particle.

ii. \displaystyle{\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}}, where \mathbf{v} is the velocity of the particle.

(b) What is the radius of curvature of the path when the particle reaches the highest point?


Answer.

(The solution below is based on the manuscript of 2014-2015 PHYS1250 Fundamental Physics Homework Solutions.)

(a)

i. \displaystyle{\frac{\mathrm{d}v}{\mathrm{d}t}} varies with time.

ii. \displaystyle{\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}}=\mathbf{a}=\mathbf{g}=\textrm{Const.}


Explanation.

\begin{aligned} \mathbf{v} & =v_x\,\hat{\mathbf{i}}+v_y\,\hat{\mathbf{j}} \\ & = v_0\cos\theta\,\hat{\mathbf{i}}+\big(v_0\sin\theta -gt\big)\,\hat{\mathbf{j}}\\ v & = |\mathbf{v}| \\ & = \sqrt{(v_0\cos\theta )^2+(v_0\sin\theta -gt)^2} \\ & = \sqrt{v_0^2-2gtv_0\sin\theta +g^2t^2}\\ \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} & = \bigg( \frac{\mathrm{d}}{\mathrm{d}t}(v_0\cos\theta ) \bigg)\,\hat{\mathbf{i}} + \bigg(\frac{\mathrm{d}}{\mathrm{d}t}(v_0\sin\theta -gt)\bigg)\,\hat{\mathbf{j}}\\ & = -g\,\hat{\mathbf{j}}\\ & = \mathbf{g} \\ \frac{\mathrm{d}v}{\mathrm{d}t} & = \bigg( \sqrt{v_0^2-2gtv_0\sin\theta +g^2t^2}\bigg)'\\ & = \frac{1}{2}\Big( \sqrt{v_0^2-2gtv_0\sin\theta +g^2t^2}\Big)^{-1} \cdot (-2gv_0\sin\theta + 2g^2t)\\ & \propto t \end{aligned}


(b)

\begin{aligned} a=\frac{v^2}{r} & \Rightarrow g=\frac{v_0^2\cos^2\theta}{r} \\ & \Rightarrow r=\frac{v_0^2\cos^2\theta}{g} \end{aligned}

202104150729 Homework 1 (Q1)

A man starts from the origin and walks 30\,\mathrm{m} due east in 25\,\mathrm{s}. Then, he walks 10\,\mathrm{m} due south in 10\,\mathrm{s} and 18\,\mathrm{m} due northwest in 15\,\mathrm{s}. Please take the paths due east and due north as the positive x and y directions respectively in the Cartesian plane.

(a) Sketch the man’s path on the Cartesian plane.

(b) What is the average velocity of the man?

(c) What is the average speed of the man?


Solution.

(The solution below is based on the manuscript of 2014-2015 PHYS1250 Fundamental Physics Homework Solutions.)

(a)

(b) The average velocity of the man is

\begin{aligned} \mathbf{OC} & = \mathbf{OA} + \mathbf{AB} + \mathbf{BC} \\ & = 30\,\hat{\mathbf{i}} - 10\,\hat{\mathbf{j}} + 18\bigg( -\frac{1}{\sqrt{2}}\,\hat{\mathbf{i}} + \frac{1}{\sqrt{2}}\,\hat{\mathbf{j}} \bigg) \\ & = \bigg( 30-\frac{18}{\sqrt{2}} \bigg) \hat{\mathbf{i}} + \bigg( \frac{18}{\sqrt{2}}-10 \bigg) \,\hat{\mathbf{j}}\\ & = 17.27\,\hat{\mathbf{i}} + 2.73\,\hat{\mathbf{j}} \end{aligned}

\begin{aligned} \therefore \mathbf{v}_{\textrm{avg}}& =\frac{\mathbf{OC}}{\Delta t} \\ & = \frac{17.27\,\hat{\mathbf{i}} + 2.73\,\hat{\mathbf{j}}}{50} \\ & = 0.35\,\hat{\mathbf{i}} + 0.055\,\hat{\mathbf{j}} \\ \therefore\quad |\mathbf{v}_{\textrm{avg}}| & = \sqrt{0.35^2+0.055^2} = 0.35\,\mathrm{m\, s^{-1}} \end{aligned}

Direction of \mathbf{v}_{\textrm{avg}}:

\begin{aligned} \tan\theta & = \frac{0.055}{0.35}=0.16 \\ \theta & = 8.9^\circ \end{aligned}

(c) The average speed of the man is

\begin{aligned} v_{\textrm{avg}} & = \frac{OA+AB+BC}{\Delta t} \\ & = \frac{30+10+18}{50} \\ & = 1.16\,\mathrm{m\,s^{-1}} \end{aligned}