202102190159 Homework 1 (Q1)

(a) Find the reciprocal of x+\mathrm{i}y, working entirely in the Cartesian representation.

(b) Repeat part (a), working in polar form but expressing the final result in Cartesian form.


Solution.

(a)

\begin{aligned} \frac{1}{x+\mathrm{i}y} & = \bigg( \frac{1}{x+\mathrm{i}y}\bigg) \bigg( \frac{x-\mathrm{i}y}{x-\mathrm{i}y}  \bigg) \\ & = \frac{x-\mathrm{i}y}{x^2-(\mathrm{i}y)^2} \\ & = \frac{x-\mathrm{i}y}{x^2+y^2} \\ & = \bigg( \frac{x}{x^2+y^2}  \bigg) - \mathrm{i}\bigg( \frac{y}{x^2+y^2} \bigg) \end{aligned}

(b)

Let

x+\mathrm{i}y\stackrel{\mathrm{def}}{=}z=re^{\mathrm{i}\varphi}

where r=\sqrt{x^2+y^2} and \varphi = \arctan\bigg( \displaystyle{\frac{y}{x}} \bigg).

Then, the reciprocal of z=x+\mathrm{i}y is

\begin{aligned} \frac{1}{z} & = \frac{1}{re^{\mathrm{i}\varphi}} \\ & = \frac{1}{r}\, e^{\mathrm{i}(-\varphi )} \\ & = \frac{1}{r}\, \mathrm{cis}(-\varphi )\\ & = \frac{1}{r}\big(\cos (-\varphi)+\mathrm{i}\sin (-\varphi )\big)\\ & = \frac{1}{r}(\cos\varphi -\mathrm{i}\sin\varphi ) \\ & = \frac{1}{\sqrt{x^2+y^2}}\bigg[ \frac{x}{\sqrt{x^2+y^2}} - \mathrm{i}\Big( \frac{y}{\sqrt{x^2+y^2}}  \Big) \bigg] \\ & = \bigg( \frac{x}{x^2+y^2}  \bigg) - \mathrm{i}\bigg( \frac{y}{x^2+y^2} \bigg) \end{aligned}

Leave a Reply

Your email address will not be published. Required fields are marked *