202010020718 Problem 2.1.2

Let (X,d) be a metric space and let k be a fixed positive real number. For x,\, y\in X, define

d^{*}=kd(x,y).

Prove that d^{*} is a metric on X.


Recall.

Definition. (metric) Let X be a non-empty set. A metric on X is a real-valued function d:\enspace X\times X\rightarrow \mathbb{R} satisfying the following conditions iiv:

i. d(x,y)\ge 0;
ii. d(x,y)=0\Leftrightarrow x=y;
iii. (Symmetry) d(x,y)=d(y,x);
iv. (Triangle Inequality) d(x,y)\le d(x,z)+d(z,y)for any x,\, y,\, z\in X.

N.b. Given x,\,y\in X, d(x,y) is sometimes called the distance between x and y with respect to d.


Proof.

i.

WTS (wish to show)

d^{*}(x,y)\ge 0

By definition d^{*}(x,y)=kd(x,y) and in that the metric d is let clear (\therefore d(x,y)\ge 0) and k a fixed positive real number (\therefore k>0),

one can see

\begin{aligned} d^{*}(x,y) & = kd(x,y) \\ \textrm{\dots because\enspace} & k>0 \enspace \textrm{and}\enspace d(x,y)\ge 0\textrm{\enspace \dots}\\ d^{*}(x,y) & \geqslant 0 \\ \end{aligned}

\therefore Condition i. is made.

ii.

\begin{aligned} d^{*}(x,y) & = 0 \\ \Leftrightarrow kd(x,y) & = 0 \\ \dots\enspace \textrm{as}\enspace k>0 \enspace & \textrm{so}\enspace k\neq 0\enspace \dots \\ \Leftrightarrow d(x,y) & = 0 \\ \dots\enspace \textrm{as}\enspace d \enspace \textrm{was} &\enspace\textrm{foretold to be a metric}\enspace \dots \\ \Leftrightarrow x & = y \\ \end{aligned}

\therefore Condition ii. is made.

iii.

NTS (need to show)

d^{*}(x,y)=d^{*}(y,x)

\begin{aligned} \textrm{LHS} & = d^{*}(x,y) \\ & = kd(x,y) \\ \dots \enspace & \textrm{by the symmetric property of }d\enspace \dots \\ & =kd(y,x) \\ & = d^{*}(y,x) \\ & = \textrm{RHS} \\ \end{aligned}

\therefore Condition iii. is made.

iv.

RTP (required to prove)

d^{*}(x,y)\leqslant d^{*}(x,z)+d^{*}(z,y)

One starts with the left hand side,

\begin{aligned} \textrm{LHS} & = d^{*}(x,y) \\ & = kd(x,y) \\ \dots \textrm{as does}\enspace & d(x,y)\le d(x,z)+d(z,y)\enspace\textrm{the metric}\enspace d\enspace \textrm{do} \dots \\ & \le k\Big( d(x,z) + d(z,y) \Big) \\ & = kd(x,z) + kd(z,y) \\ & = d^{*}(x,z) + d^{*}(z,y) \\ & = \textrm{RHS} \\ \end{aligned}

Condition iv. is made.


In conclusion, (X,d^{*}) is a metric space metered by a well-defined metric d^{*}. This metric space shall simply be called X hence.

Leave a Reply

Your email address will not be published. Required fields are marked *