202008181129 Homework 1 (Q1)

Solve for z\in \mathbb{C} in the following equations:

(a) z^4+z^3+z^2+z+1=0,

(b) 3z^3+29z^2+497z-169=0.


 Attempts.

(a) Take notice that z\neq 1. Try and see having both sides of the equation multiplied by (1-z),

\begin{aligned} 0 & = (1-z)(z^4+z^3+z^2+z+1)  \\ 0 & = 1-z^5  \\ z^5 & = 1 = 1(1+0\,\mathrm{i}) \\ z^5 & = e^{\mathrm{i}(2n\pi)}\qquad \qquad \textrm{where }n=0,1,2,3,4. \\ \end{aligned}

\therefore z=e^{\mathrm{i}(\frac{2n\pi}{5})}.

(n=0 is rejected for z\neq 1=e^{\mathrm{i}(\frac{2(0)\pi}{5})}.)

In polar expression z=e^{\mathrm{i\frac{2\pi}{5}}},\, e^{\mathrm{i\frac{4\pi}{5}}},\, e^{\mathrm{i\frac{6\pi}{5}}},\, e^{\mathrm{i\frac{8\pi}{5}}}.

In trigonometric expression

z=\mathrm{cis}(\frac{2n\pi}{5})=\mathrm{cis}(\frac{2\pi}{5}),\, \mathrm{cis}(\frac{4\pi}{5}),\, \mathrm{cis}(\frac{6\pi}{5}),\, \mathrm{cis}(\frac{8\pi}{5})

I.e.,

\begin{aligned} z^1 & = \cos 72^\circ +\mathrm{i}\sin 72^\circ = \mathrm{cis\,} 72^\circ \\ z^2 & = \cos 144^\circ +\mathrm{i}\sin 144^\circ = \mathrm{cis\,} 144^\circ \\ z^3 & = \cos 216^\circ +\mathrm{i}\sin 216^\circ = \mathrm{cis\,} 216^\circ \\ z^4 & = \cos 288^\circ +\mathrm{i}\sin 288^\circ = \mathrm{cis\,} 288^\circ \\ \end{aligned}

(b)Let f(z)=3z^3+29z^2+497z-169=0. Then (3z-1) is a factor, because \frac{1}{3} is a zero (i.e., f(\frac{1}{3}) = \frac{1}{9}+\frac{29}{9}+\frac{497}{3}-169=0).

\begin{aligned} f(z) & =(3z-1)(z^2+10z+169) \\ & = (3z-1)g(z) \\ \end{aligned}

When g(z)=0, z=\displaystyle{\frac{-10\pm \sqrt{100-4(169)}}{2}}=-5\pm 12\,\mathrm{i}.

The solution to f(z)=0 gives z_1=\frac{1}{3}, z_2=-5+12\,\mathrm{i}, and z_3=-5-12\,\mathrm{i}.

Leave a Reply

Your email address will not be published. Required fields are marked *