202408221017 Exercise 5.68

A particle moves along the space curve

\mathbf{r}=e^{-t}\cos t\,\hat{\mathbf{i}}+e^{-t}\sin t\,\hat{\mathbf{j}}+e^{-t}\,\hat{\mathbf{k}}.

Find the magnitude of the (a) velocity and (b) acceleration at any time t.

Extracted from Spiegel, M. R. (1971). Schaum’s Outline of Theory and Problems of Advanced Mathematics for Engineers and Scientists.


Roughwork.

Let displacement

\mathbf{r}=r_x\,\hat{\mathbf{i}}+r_y\,\hat{\mathbf{j}}+r_z\,\hat{\mathbf{k}}

where

\begin{aligned} r_x(t) & = e^{-t}\cos t \\ r_y(t) & = e^{-t}\sin t \\ r_z(t) & = e^{-t} \\ \end{aligned}

then velocity

\mathbf{v}=v_x\,\hat{\mathbf{i}}+v_y\,\hat{\mathbf{j}}+v_z\,\hat{\mathbf{k}}

where

\begin{aligned} v_x & = \frac{\mathrm{d}r_x}{\mathrm{d}t} \\ & =\frac{\mathrm{d}}{\mathrm{d}t}(e^{-t}\cos t) \\ v_x(t)& = -e^{-t}\sin t-e^{-t}\cos t \\ v_y & = \frac{\mathrm{d}r_y}{\mathrm{d}t} \\ & =\frac{\mathrm{d}}{\mathrm{d}t}(e^{-t}\sin t) \\ v_y(t)& = e^{-t}\cos t-e^{-t}\sin t \\ v_z & = \frac{\mathrm{d}r_z}{\mathrm{d}t} \\ & =\frac{\mathrm{d}}{\mathrm{d}t}(e^{-t}) \\ v_z(t)& = -e^{-t} \\ \end{aligned}

then acceleration

\mathbf{a}=a_x\,\hat{\mathbf{i}}+a_y\,\hat{\mathbf{j}}+a_z\,\hat{\mathbf{k}}

where

\begin{aligned} a_x & = \frac{\mathrm{d}v_x}{\mathrm{d}t} \\ & =\frac{\mathrm{d}}{\mathrm{d}t}(-e^{-t}\sin t-e^{-t}\cos t) \\ a_x(t)& = 2e^{-t}\sin t\\ a_y & = \frac{\mathrm{d}v_y}{\mathrm{d}t} \\ & =\frac{\mathrm{d}}{\mathrm{d}t}(e^{-t}\cos t-e^{-t}\sin t) \\ a_y(t)& = -2e^{-t}\cos t\\ a_z & = \frac{\mathrm{d}v_z}{\mathrm{d}t} \\ & =\frac{\mathrm{d}}{\mathrm{d}t}(-e^{-t}) \\ a_z(t)& = e^{-t} \\ \end{aligned}

Cheat.

\mathbf{r}(t) = \underbrace{e^{-t}}_{\textrm{(1)}}\underbrace{(\cos t,\sin t, 1)}_{\textrm{(2)}}

where

\begin{aligned} \textrm{(1):}&\enspace \textrm{radial centripetal} \\ \textrm{(2):}&\enspace \textrm{circumferential anticlockwise} \\ \end{aligned}

By courtesy of WolframAlpha

In a cylindrical coordinate system, the position of a particle can be written as

\mathbf{r}=\rho\,\hat{\boldsymbol{\rho}}+z\,\hat{\mathbf{z}}.

The velocity of the particle is the time derivative of its position,

\mathbf{v}=\displaystyle{\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}}=\dot{\rho}\,\hat{\boldsymbol{\rho}}+\rho\dot{\varphi}\,\hat{\boldsymbol{\varphi}}+\dot{z}\,\hat{\mathbf{z}},

where the term \rho\dot{\varphi}\,\hat{\boldsymbol{\varphi}} comes from the Poisson formula

\displaystyle{\frac{\mathrm{d}\hat{\boldsymbol{\varphi}}}{\mathrm{d}t}}=\dot{\varphi}\,\hat{\mathbf{z}}\times\hat{\boldsymbol{\rho}}.

Its acceleration is

\mathbf{a}=\displaystyle{\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}}=(\ddot{\rho}-\rho\dot{\varphi}^2)\,\hat{\boldsymbol{\rho}}+(2\dot{\rho}\dot{\varphi}+\rho\ddot{\varphi})\,\hat{\boldsymbol{\varphi}}+\ddot{z}\,\hat{\mathbf{z}}.

Kinematics in Wikipedia on Cylindrical coordinate system


Stop wandering! You are facing up to

\begin{aligned} v=|\mathbf{v}|=\sqrt{v_x^2+v_y^2+v_z^2} & = \cdots \\ a=|\mathbf{a}|=\sqrt{a_x^2+a_y^2+a_z^2} & = \cdots \\ \end{aligned}

But then, I’m fond of opting out.


This problem is not to be attempted.

202408211136 Exercise 14.C.10

A stone is thrown vertically upwards so that its height, s metres, above the ground, after t seconds is given by s=40t-5t^2. Find

(a) its velocity after 2\,\mathrm{s};
(b) its height above the ground when it is momentarily at rest;
(c) its initial velocity;
(d) its velocity when it is 15\,\mathrm{m} above the ground, giving your answer correct to the nearest \mathrm{m\,s^{-1}}.

Extracted from K. S. Teh & C. Y. Loh. (2007). New Syllabus Additional Mathematics (8e)


Roughwork.

Initially (i.e., at t=0), the stone is

s(t=0)=40(0)-5(0)^2=0\,\mathrm{m}

above the ground, i.e., at ground level s=0.

\begin{aligned} & s = 40t-5t^2 = t(40-5t) \\ \Rightarrow & \begin{cases} s =0 \Leftrightarrow t = \{0\}\cup\{ 8\} \\ s > 0 \Leftrightarrow t\in (0,8) \\ s < 0 \Leftrightarrow t<0\enspace\textrm{(rej.)}\enspace\textrm{\scriptsize{OR}}\enspace t>8 \\ \end{cases} \\ \end{aligned}

Take upward positive. The (vertical) displacement of the stone is

\begin{aligned} \mathbf{s}(t) & =s(t)\,\hat{\mathbf{j}} \\ & = (40t-5t^2)\,\hat{\mathbf{j}} \\ \end{aligned}

its (vertical) instantaneous velocity

\begin{aligned} \mathbf{v}(t) & = v(t)\,\hat{\mathbf{j}} \\ & = \frac{\mathrm{d}s(t)}{\mathrm{d}t}\,\hat{\mathbf{j}} \\ & = (40t-5t^2)'\,\hat{\mathbf{j}} \\ & = (40-10t)\,\hat{\mathbf{j}} \\ \end{aligned}

and its (vertical) instantaneous acceleration

\begin{aligned} \mathbf{a}(t) & = a(t)\,\hat{\mathbf{j}} \\ & = \frac{\mathrm{d}v(t)}{\mathrm{d}t}\,\hat{\mathbf{j}} \\ & = (40-10t)'\,\hat{\mathbf{j}} \\ \mathbf{a} & = -10\,\hat{\mathbf{j}} \\ \end{aligned}

so are the answers to

(a) \mathbf{v}(2)
(b) t'\in\{ t:v(t)=0\}\enspace\rightsquigarrow\enspace s(t')
(c) \mathbf{v}(0)
(d) t'\in\{ t:\mathbf{s}(t)=+15\,\hat{\mathbf{j}}\} \enspace\rightsquigarrow\enspace \mathbf{v}(t')


This problem is not to be attempted.

202408201533 Example 13.8

Let \displaystyle{x=\frac{y-2}{y+2}}.

(a) Find \displaystyle{\frac{\mathrm{d}y}{\mathrm{d}x}} in terms of y.
(b) Make y the subject of the given function. Hence, find \displaystyle{\frac{\mathrm{d}y}{\mathrm{d}x}} in terms of x.
(c) Are the answers obtained in (a) and (b) different? Explain your assertion.

Extracted from S. W. Li et al. (2002). New Progress in Additional Mathematics Book 3


Roughwork.

\begin{aligned} x & = \frac{y-2}{y+2} \\ x & = \frac{y+2-4}{y+2} \\ \textrm{Eq. (1):}\quad x=f(y) & = 1-\frac{4}{y+2} \\ \frac{4}{y+2} & = 1-x \\ \frac{4}{1-x} & = y+2 \\ \textrm{Eq. (2):}\quad y=g(x) & = \frac{4}{1-x} - 2 \\ \end{aligned}


domain: what can go into a function
codomain: what may possibly come out of a function
range: what actually comes out of a function

Kevin Sookocheff on Range, Domain, and Codomain (2018)


Write, for function f,

\begin{aligned} \textrm{domain: }& \mathbb{R}\backslash\{ -2\} \\ \textrm{codomain: }& \mathbb{R} \\ \textrm{range: }& \mathbb{R} \\ \end{aligned}

and for function g,

\begin{aligned} \textrm{domain: }& \mathbb{R}\backslash\{ 1\} \\ \textrm{codomain: }& \mathbb{R} \\ \textrm{range: }& \mathbb{R} \\ \end{aligned}

We see f discontinuous at -2; and g, at 1; whereas non-differentiable.


(to be continued)

202408191743 Geometry 0

\forall : for all/any/each/every
\exists : there exist(s)/is/are


If, in any event (x,y,z,t):

i. no two points a and b occupy the same position. I.e.,

\forall\, t\, \nexists\, a(\neq b)\enspace\textrm{s.t. }(x_a,y_a,z_a)=(x_b,y_b,z_b)

ii. none any point a occupies more than one position. I.e.,

\forall\,a,t\,\exists\, !\mathbf{r}\enspace\textrm{s.t. }a\stackrel{\mathbf{r}(t)}{\longmapsto}(x_a,y_a,z_a)

such points are said to be mass particles; or else massless particles.


(to be continued)