202405071349 Exercise 13.2.1

A right pyramid, 12\,\mathrm{cm} high, stands on a rectangular base 6\,\mathrm{cm} by 10\,\mathrm{cm}. Calculate (a) the length of an edge of the pyramid; (b) the angles the triangular faces made with the base; (c) the volume of the pyramid.

Extracted from A. Godman & J. F. Talbert. (1973). Additional Mathematics Pure and Applied in SI Units.


Roughwork.

Commit my visualization to drawing.

right pyramid is a pyramid where the base is circumscribed about the circle and the altitude of the pyramid meets at the circle’s center.

Wikipedia on Pyramid (geometry)

The pyramid above has a polygonal base, here the rectangle QRST, and an apex P, here the common vertex of triangles \triangle PTQ, \triangle PQR, \triangle PRS, and \triangle PST. The altitude is based on the origin O. To suit our coordinates to this problem, we write

\begin{aligned} P & =P(0,0,12) \\ Q & =Q(3,5,0) \\ R & =R(-3,5,0) \\ S & =S(-3,-5,0) \\ T & =T(3,-5,0) \\ \end{aligned}

such that

\begin{aligned} a & = c = 10 \\ b & = d = 6 \\ e & = f = g = h \\ & = \surd \big\{ (12)^2 + \big( \sqrt{(6)^2+(10)^2}/2\big)^2 \big\} \\ & = \sqrt{178} \\ & = 13.3417\quad\textrm{(4 d.p.)} \\ \end{aligned}

For the edges of its base, write

\begin{aligned} a=\overline{TQ} & :\begin{cases} x=3 \\ |y|\leqslant 5 \\ z=0 \\ \end{cases} \\ b=\overline{QR} & :\begin{cases} |x|\leqslant 3 \\ y=5 \\ z=0 \\ \end{cases} \\ c=\overline{RS} & :\begin{cases} x=-3 \\ |y|\leqslant 5 \\ z=0 \\ \end{cases} \\ d=\overline{ST}& :\begin{cases} |x|\leqslant 3 \\ y=-5 \\ z=0 \\ \end{cases} \\ \end{aligned}

and for, the lateral, edge e=\overline{PQ}:

\begin{aligned} \frac{x-3}{0-3} & = \frac{y-5}{0-5} = \frac{z-0}{12-0} \\ \end{aligned}

edge f=\overline{PR}:

\begin{aligned} \frac{x-(-3)}{0-(-3)} & = \frac{y-5}{0-5} = \frac{z-0}{12-0} \\ \end{aligned}

edge g=\overline{PS}:

\begin{aligned} \frac{x-(-3)}{0-(-3)} & = \frac{y-(-5)}{0-(-5)} = \frac{z-0}{12-0} \\ \end{aligned}

and edge h=\overline{PT}:

\begin{aligned} \frac{x-3}{0-3} & = \frac{y-(-5)}{0-(-5)} = \frac{z-0}{12-0} \\ \end{aligned}

For lateral surface A enclosed by edges a, h, and e, write

A(x,y,z):\begin{cases} (x,y,z)\in [0,3]\times [-5,5]\times [0,12] \\ \textrm{s.t. }\displaystyle{\frac{|y|}{5}\leqslant \frac{x}{3}=1-\frac{z}{12}} \\ \end{cases}

for lateral surface B by edges b, e, and f, write:

B(x,y,z):\begin{cases} (x,y,z)\in [-3,3]\times [0,5]\times [0,12] \\ \textrm{s.t. }\displaystyle{\frac{|x|}{3}\leqslant \frac{y}{5}=1-\frac{z}{12}} \\ \end{cases}

for lateral surface C by edges c, f, and g, write:

C(x,y,z):\begin{cases} (x,y,z)\in [-3,0]\times [-5,5]\times [0,12] \\ \textrm{s.t. }\displaystyle{\frac{|y|}{5}\leqslant -\frac{x}{3}=1-\frac{z}{12}} \\ \end{cases}

for lateral surface D by edges d, g, and h, write:

D(x,y,z):\begin{cases} (x,y,z)\in [-3,3]\times [-5,0]\times [0,12] \\ \textrm{s.t. }\displaystyle{\frac{|x|}{3}\leqslant -\frac{y}{5}=1-\frac{z}{12}} \\ \end{cases}

and for base E by edges a, b, c, and d:

write

E(x,y,z):\begin{cases} |x|\leqslant 3 \\ |y|\leqslant 5 \\ z=0 \\ \end{cases}


This problem is not to be attempted.