202310171238 Exercise 18.6.8

A particle moves along a straight line so that its distance (s) from a fixed point O on the line after t\,\mathrm{s} is given by

s=t^3-12t^2+45t.

Find the distances from O when the particle is momentarily at rest and the accelerations at these times.

Extracted from A. Godman & J. F. Talbert. (1973). Additional Mathematics Pure and Applied in SI units


Roughwork.

We give the direction to the right a positive sign.

By substituting t=0 for time, we found the original position of the particle to be at a distance:

\begin{aligned} s(t=0) & = |\mathbf{s}(0)| \\ & = |(0)^3-12(0)^2+45(0)\,\hat{\mathbf{i}}| \\ & = 0\,\mathrm{unit} \\ \end{aligned}

from point O, which shall be called the origin hence.

The instantaneous velocity being

\begin{aligned} \mathbf{v}(t)& =\lim_{\Delta t\to 0}\frac{\Delta \mathbf{s}}{\Delta t} \\ & = \frac{\mathrm{d}\mathbf{s}}{\mathrm{d}t} \\ & = \frac{\mathrm{d}}{\mathrm{d}t}(t^3-12t^2+45t)\,\hat{\mathbf{i}} \\ & = (3)t^{(3)-1} - 12(2)t^{(2)-1} + 45(1)t^{(1)-1} \\ & = 3t^2 -24t + 45\,\hat{\mathbf{i}} \\ \end{aligned}

the average velocity during time interval of t\in [0,t'] being

\begin{aligned} v_{\textrm{avg}}(t') & = \frac{s(t')}{t'} \\ & = \frac{(t')^3-12(t')^2+45(t')}{t'} \\ & = t'^2-12t'+45 \\ \end{aligned}

in magnitude; the instantaneous acceleration being

\begin{aligned} a(t) & = \bigg| \frac{\mathrm{d}^2}{\mathrm{d}t^2}(s(t))\,\hat{\mathbf{i}}\bigg| \\ & = \frac{\mathrm{d}}{\mathrm{d}t}\bigg(\frac{\mathrm{d}}{\mathrm{d}t}(t^3-12t^2+45t) \bigg) \\ & = \frac{\mathrm{d}}{\mathrm{d}t}(3t^2-24t+45) \\ & = 6t-24\\ \end{aligned}

in magnitude; the momentum being

\begin{aligned} p & =mv\\ & = m(3t^2 -24t + 45) \\ \end{aligned}

in magnitude; and the displacement

\begin{aligned} s(t) & = t^3-12t^2+45t \\ & = t(t-3)(t-15) \\ \end{aligned}

in magnitude; such that the particle is at the origin O when

t=\{ 0\}\cup\{ 3\}\cup \{ 15\}.

The particle is momentarily at rest when the direction of velocity changes signs, or the instant speed is v=\lVert \mathbf{v}\rVert = 0:

\begin{aligned} v(t) & = 3t^2-24t+45 \\ & = 3(t-5)(t-3) \\ \end{aligned}

such as t=\{ 3\}\cup\{ 5\} that the distances from O are respectively

\begin{aligned} s(3) & =(3)^3-12(3)^2+45(3) = 0 \\ s(5) & =(5)^3-12(5)^2+45(5) = 50 \\ \end{aligned}

and the accelerations at these times

\begin{aligned} \mathbf{a}(3) & =6(3)-24 = 6\,(-)\hat{\mathbf{i}} \\ \mathbf{a}(5) & =6(5)-24 = 6\,(+)\hat{\mathbf{i}} \\ \end{aligned}.


This problem is not to be attempted.