202310191146 Exercise 7.9.26

Evaluate the integral

\displaystyle{\int x\sin x\cos x\,\mathrm{d}x}.

Extracted from James Stewart. (2012). Calculus (8e)


Roughwork.

(abortive attempt)

\begin{aligned} & \quad\enspace \int x\sin x\cos x\,\mathrm{d}x \\ & = \int x\sin x\cos x \bigg(\frac{\mathrm{d}(\sin x)}{\cos x}\bigg) \\ & = \int x\sin x\,\mathrm{d}(\sin x) \\ & = (x\sin x)(\sin x) - \int (\sin x)\bigg(\frac{\mathrm{d}(x\sin x)}{\mathrm{d}x}\bigg)\,\mathrm{d}x + C\quad\textrm{for some constant} \\ & = x\sin^2x - \int \sin x\,\mathrm{d}(x\sin x) \\ & = x\sin^2x - \bigg\{ (\sin x)(x\sin x) - \int (x\sin x)\bigg(\frac{\mathrm{d}}{\mathrm{d}x}(\sin x)\bigg) \,\mathrm{d}x \bigg\} \\ & = x\sin^2x - \bigg\{ x\sin^2x - \int x\sin x\cos x\,\mathrm{d}x \bigg\} \\ & = \int x\sin x\cos x\,\mathrm{d}x \\ \end{aligned}


As a last resort, I need help from the following

Fundamental Theorem of Calculus. Let f be a continuous real-valued function defined on a closed interval [a,b], Let F be the function defined, for all x in [a,b], by

\displaystyle{F(x)=\int_{a}^{x}f(t)\,\mathrm{d}t}

Then F is uniformly continuous on [a,b] and differentiable on the open interval (a,b), and

F'(x)=f(x)

for all x in (a,b) so F is an antiderivative of f.

Cited from Wikipedia on Fundamental theorem of calculus


Let \displaystyle{\frac{\mathrm{d}F(x)}{\mathrm{d}x}=x\sin x\cos x}.

But for using foresight, one should not have written

\begin{aligned} F(x) & :=\frac{x}{2}\sin^2x+G(x) \\ \frac{\mathrm{d}F(x)}{\mathrm{d}x} & = x\sin x\cos x + \frac{\sin^2x}{2} + G'(x) \\ G'(x) & := -\frac{\sin^2x}{2} \\ G(x) & = \int G'(x)\,\mathrm{d}x \\ & = -\frac{1}{2}\int\sin^2x\,\mathrm{d}x \\ & = -\frac{1}{2}\int \bigg(  \frac{1-\cos 2x}{2}\bigg) \,\mathrm{d}x\\ & = -\frac{1}{4}\bigg\{ \int \mathrm{d}x - \int \cos 2x\,\mathrm{d}x \bigg\} \\ & = -\frac{1}{4}\bigg\{ x - \frac{\sin 2x}{2} \bigg\} \\ F(x) & = \frac{x}{2}\sin^2x - \frac{1}{4}\bigg( x - \frac{\sin 2x}{2} \bigg) \\ & = \frac{x\sin^2x}{2} + \frac{\sin 2x}{8} - \frac{x}{4} \\ \end{aligned}

with some constant C.


The case is closed.

202310181051 Exercise 7.9.21

Evaluate the integral

\displaystyle{\int \frac{\mathrm{d}x}{\sqrt{x^2-4x}}}.

Extracted from James Stewart. (2012). Calculus (8e)


Roughwork.

There are as many ways to evaluate definite/indefinite integrals as there are to evaluate derivatives/differentials, for example, by i. basic integration formulae, ii. substitution by rational polynomials, trigonometric functions, or hyperbolic functions, iii. integration by parts, iv. reduction formulae, iv. simplification by partial fractions, v. parity argument, and vi. parametrization.


Make use of none above but the following

Residue Theorem. Suppose that the function f is analytic within and on a positively oriented simple closed contour C except for a finite number of isolated singular points \{ z_j, j=1,2,\dots ,N\} interior to C, then

\displaystyle{\int_{C}f(z)\,\mathrm{d}z=2\pi i\sum_{j=1}^{N}\mathrm{Res}_{z=z_j}f(z)}.

Residue Formula. If f(z) has a pole of order k at z=z_0, then

\displaystyle{\mathrm{Res}\, (f,z_0)=\frac{1}{(k-1)!}\frac{\mathrm{d}^{k-1}}{\mathrm{d}z^{k-1}}\Big( (z-z_0)^kf(z)\Big)\bigg|_{z=z_0}}


Write for some real number x

\begin{aligned} & \quad\enspace \int \frac{\mathrm{d}x}{\sqrt{x^2-4x}} \\ & \hookrightarrow \textrm{let }R(x)=\frac{1}{\sqrt{x^2-4x}} \\ \end{aligned}

and also for some complex number z=x+iy,

\begin{aligned} & \quad\enspace \int \frac{\mathrm{d}z}{\sqrt{z^2-4z}} \\ & \hookrightarrow \textrm{let }R(z)=\frac{1}{\sqrt{z^2-4z}} \\ \end{aligned}

Then there are two singular points (/singularities) (0,0) and (4,0) on the Argand plane, because, for instance

\displaystyle{R\big( (0,0)\big)=\frac{1}{\sqrt{(0)^2-4(0)}}}

is undefined.

From the denominator of R(z) we see there

\sqrt{z(z-4)}

2 poles of order \frac{1}{2} (*fractional order seems disputable, but no worries as you read further along), by the fact that

\begin{aligned} & \lim_{z\to 0} (z)^{(\frac{1}{2})}\frac{1}{\sqrt{z^2-4z}} = -\frac{i}{2} \neq 0 \\ & \lim_{z\to 4} (z-4)^{(\frac{1}{2})}\frac{1}{\sqrt{z^2-4z}} = \frac{1}{2} \neq 0 \\ \end{aligned}

and their residues being:

z(x,y)=\{ (0,0)\} \cup \{ (4,0)\}.


We introduce the below

Lemma 1. (positive fractional derivatives)

\displaystyle{\frac{\mathrm{d}^nx^m}{\mathrm{d}x^n}=\frac{\Gamma (m+1)}{\Gamma (m-n+1)}x^{m-n}}

In particular, if letting m=1 and n=1/2, then

\displaystyle{\frac{\mathrm{d}^{1/2}x}{\mathrm{d}x^{1/2}}=\frac{2\sqrt{x}}{\sqrt{\pi}}}.

Lemma 2. (negative fractional derivatives)

\displaystyle{D^{-\nu}x^{\mu}=\frac{\Gamma (\mu +1)}{\Gamma (\mu +\nu +1)}x^{\mu +\nu}}

where \nu >0, \mu >-1, and x>0. In particular, if \nu =\frac{1}{2}, then

\begin{aligned} D^{-1/2}x^0 & = \frac{\Gamma (1)}{\Gamma (3/2)}x^{1/2}=2\sqrt{\frac{x}{\pi}} \\ D^{-1/2}x^1 & = \frac{\Gamma (2)}{\Gamma (5/2)}x^{3/2}=\frac{4}{3}\sqrt{\frac{x^3}{\pi}} \\ D^{-1/2}x^2 & = \frac{\Gamma (3)}{\Gamma (7/2)}x^{5/2}=\frac{16}{15}\sqrt{\frac{x^5}{\pi}} \\ \end{aligned}

where the Legendre’s Gamma function is given by

\Gamma (n+1)=n!.

For brevity we state without proof the definition of factorial of fractions:

\displaystyle{N!=\prod (N)}

where N\in\mathbb{Q} and Gauss product Pi is

\displaystyle{\prod (x) = \int_{0}^{\infty}t^xe^{-t}\,\mathrm{d}t}

Cited from Kimeu, Joseph M., “Fractional Calculus: Definitions and Applications” (2009). Masters Theses & Specialist Projects. Paper 115.


Therefore

\begin{aligned} &\quad\enspace \int R(x)\,\mathrm{d}x \\ & = \pi i\bigg\{ \mathrm{Res}\, [R(z),0] + \mathrm{Res}\, [R(z),4] \bigg\} \\ \end{aligned}

\begin{aligned} \hookrightarrow\quad\mathrm{Res}(R(z),0) & = \frac{1}{(-1/2)!}\frac{\mathrm{d}^{-1/2}}{\mathrm{d}z^{-1/2}}(z-0)^{1/2}R(z)\bigg|_{z=0} \\ & = \frac{1}{\sqrt{\pi}}\frac{\mathrm{d}^{-1/2}}{\mathrm{d}z^{-1/2}}\frac{\sqrt{z}}{\sqrt{z^2-4z}}\bigg|_{z=0} \\ & = \frac{1}{\sqrt{\pi}}\frac{\mathrm{d}^{-1/2}}{\mathrm{d}z^{-1/2}}\frac{1}{\sqrt{z-4}}\bigg|_{z=0} \\ & \stackrel{\dagger}{=}\frac{1}{\sqrt{\pi}}\sqrt{\frac{-2}{z'^3}}\frac{\mathrm{d}^{-1/2}}{\mathrm{d}z'^{-1/2}}\big( z'\big) \\ & = \frac{1}{\sqrt{\pi}}\sqrt{\frac{-2}{z'^3}}\bigg(\frac{4}{3}\sqrt{\frac{z'^3}{\pi}}\bigg) \\ & = \frac{4\sqrt{2}i}{3\pi} \\ & \\ \textrm{\dag} :\qquad\qquad & \\ \quad \textrm{let }z' & = \frac{1}{\sqrt{z-4}} \\ \textrm{then }\frac{\mathrm{d}z'}{\mathrm{d}z} & = -\bigg(\frac{1}{2}\bigg)(z-4)^{-3/2}(1) \\ & = -\frac{z'^3}{2} \\ \mathrm{d}z & = -\frac{2}{z'^3}\,\mathrm{d}z' \\ \end{aligned}

\begin{aligned} \hookrightarrow\quad\mathrm{Res}(R(z),4) & = \frac{1}{(-1/2)!}\frac{\mathrm{d}^{-1/2}}{\mathrm{d}z^{-1/2}}(z-4)^{1/2}R(z)\bigg|_{z=0} \\ & = \frac{1}{\sqrt{\pi}}\frac{\mathrm{d}^{-1/2}}{\mathrm{d}z^{-1/2}}\frac{\sqrt{z-4}}{\sqrt{z^2-4z}}\bigg|_{z=0} \\ & = \frac{1}{\sqrt{\pi}}\frac{\mathrm{d}^{-1/2}}{\mathrm{d}z^{-1/2}}\frac{1}{\sqrt{z}}\bigg|_{z=0} \\ & \stackrel{\textrm{\ddag}}{=}\frac{1}{\sqrt{\pi}}\sqrt{\frac{-2}{z''^3}}\frac{\mathrm{d}^{-1/2}}{\mathrm{d}z''^{-1/2}}\big( z''\big) \\ & = \frac{1}{\sqrt{\pi}}\sqrt{\frac{-2}{z''^3}}\bigg(\frac{4}{3}\sqrt{\frac{z''^3}{\pi}}\bigg) \\ & = \frac{4\sqrt{2}i}{3\pi} \\ & \\ \textrm{\ddag} :\qquad\qquad & \\ \quad \textrm{let }z'' & = \frac{1}{\sqrt{z-4}} \\ \textrm{then }\frac{\mathrm{d}z''}{\mathrm{d}z} & = -\bigg(\frac{1}{2}\bigg)(z-4)^{-3/2}(1) \\ & = -\frac{z''^3}{2} \\ \mathrm{d}z & = -\frac{2}{z''^3}\,\mathrm{d}z'' \\ \end{aligned}

\begin{aligned} &\quad\enspace \int R(x)\,\mathrm{d}x \\ & = \pi i\bigg\{ \mathrm{Res}\, [R(z),0] + \mathrm{Res}\, [R(z),4] \bigg\} \\ & = \pi i \bigg\{\frac{4\sqrt{2}i}{3\pi}+\frac{4\sqrt{2}i}{3\pi}\bigg\} \\ & = -\frac{8\sqrt{2}}{3} \\ \end{aligned}

Of course this \textrm{\scriptsize{MUST}} be a joke; how can an indefinite integral give a definite value, let alone be independent of any variable?


Countercheck.

The correct answer is

2\ln (\sqrt{x}+\sqrt{x-4})+C\enspace\textrm{for some constant}.


(to be continued)

202310171238 Exercise 18.6.8

A particle moves along a straight line so that its distance (s) from a fixed point O on the line after t\,\mathrm{s} is given by

s=t^3-12t^2+45t.

Find the distances from O when the particle is momentarily at rest and the accelerations at these times.

Extracted from A. Godman & J. F. Talbert. (1973). Additional Mathematics Pure and Applied in SI units


Roughwork.

We give the direction to the right a positive sign.

By substituting t=0 for time, we found the original position of the particle to be at a distance:

\begin{aligned} s(t=0) & = |\mathbf{s}(0)| \\ & = |(0)^3-12(0)^2+45(0)\,\hat{\mathbf{i}}| \\ & = 0\,\mathrm{unit} \\ \end{aligned}

from point O, which shall be called the origin hence.

The instantaneous velocity being

\begin{aligned} \mathbf{v}(t)& =\lim_{\Delta t\to 0}\frac{\Delta \mathbf{s}}{\Delta t} \\ & = \frac{\mathrm{d}\mathbf{s}}{\mathrm{d}t} \\ & = \frac{\mathrm{d}}{\mathrm{d}t}(t^3-12t^2+45t)\,\hat{\mathbf{i}} \\ & = (3)t^{(3)-1} - 12(2)t^{(2)-1} + 45(1)t^{(1)-1} \\ & = 3t^2 -24t + 45\,\hat{\mathbf{i}} \\ \end{aligned}

the average velocity during time interval of t\in [0,t'] being

\begin{aligned} v_{\textrm{avg}}(t') & = \frac{s(t')}{t'} \\ & = \frac{(t')^3-12(t')^2+45(t')}{t'} \\ & = t'^2-12t'+45 \\ \end{aligned}

in magnitude; the instantaneous acceleration being

\begin{aligned} a(t) & = \bigg| \frac{\mathrm{d}^2}{\mathrm{d}t^2}(s(t))\,\hat{\mathbf{i}}\bigg| \\ & = \frac{\mathrm{d}}{\mathrm{d}t}\bigg(\frac{\mathrm{d}}{\mathrm{d}t}(t^3-12t^2+45t) \bigg) \\ & = \frac{\mathrm{d}}{\mathrm{d}t}(3t^2-24t+45) \\ & = 6t-24\\ \end{aligned}

in magnitude; the momentum being

\begin{aligned} p & =mv\\ & = m(3t^2 -24t + 45) \\ \end{aligned}

in magnitude; and the displacement

\begin{aligned} s(t) & = t^3-12t^2+45t \\ & = t(t-3)(t-15) \\ \end{aligned}

in magnitude; such that the particle is at the origin O when

t=\{ 0\}\cup\{ 3\}\cup \{ 15\}.

The particle is momentarily at rest when the direction of velocity changes signs, or the instant speed is v=\lVert \mathbf{v}\rVert = 0:

\begin{aligned} v(t) & = 3t^2-24t+45 \\ & = 3(t-5)(t-3) \\ \end{aligned}

such as t=\{ 3\}\cup\{ 5\} that the distances from O are respectively

\begin{aligned} s(3) & =(3)^3-12(3)^2+45(3) = 0 \\ s(5) & =(5)^3-12(5)^2+45(5) = 50 \\ \end{aligned}

and the accelerations at these times

\begin{aligned} \mathbf{a}(3) & =6(3)-24 = 6\,(-)\hat{\mathbf{i}} \\ \mathbf{a}(5) & =6(5)-24 = 6\,(+)\hat{\mathbf{i}} \\ \end{aligned}.


This problem is not to be attempted.

202310130920 Exercise 14.1.3

If \cos A=\frac{4}{5} and \cos B=\frac{12}{13} where A and B are both acute angles, find, without using tables or a calculator,

(a) \sin (A+B),
(b) \cos (A-B),
(c) \tan (A+B).

Extracted from J. F. Talbert & H. H. Heng. (1995). Additional Mathematics Pure and Applied (6e).


Roughwork.

(a)

Not yet to approach a solution, I wish to get a feel of the problem from three perspectives— i. algebraic, ii. geometric, and iii. differential:

(i. algebraic)

\begin{aligned} \cos A & =\frac{4}{5} \\ \cos B & = \frac{12}{13} \\ & \\ \cos^2A & = \frac{16}{25} \\ \cos^2B & = \frac{144}{169} \\ & \\ \sin^2A & = 1-\cos^2A\\ & = \frac{9}{25} \\ \sin^2B & = 1-\cos^2B\\ & = \frac{25}{169} \\ & \\ \sin A & = \sqrt{\frac{9}{25}} \\ & = \frac{3}{5} \\ \sin B & = \sqrt{\frac{25}{169}} \\ & = \frac{5}{13} \\ \end{aligned}

(ii. geometric)

 

(iii. differential)

Let f(x)=\sin x. Then, recall that

\displaystyle{f(x)\approx x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\cdots }

because of Taylor series/expansion of a function f(x) at some point a:

\displaystyle{f(x)\big|_{x=a} = \sum_{n=0}^{\infty}\frac{f^{(n)}(a)}{n!}(x-a)^n\bigg|_{x=a}}

such that in our situation, you know, we have a=0 (the Maclaurin series):

\displaystyle{f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(0)}{n!}x^n}


Now that we have enough, here begins the

Solution.

(i. algebraic)

\begin{aligned} \sin (A+B) & = \sin A\cos B + \cos A\sin B \\ & = \bigg(\frac{3}{5}{\bigg)\bigg(\frac{12}{13}\bigg) + \bigg(\frac{4}{5}\bigg)\bigg(\frac{5}{13}\bigg) \\ & = \frac{56}{65} \\ \end{aligned}

(ii. geometric)

\begin{aligned} \frac{h}{14} & = \sin (90^\circ -B) \\ h & = 14\cos B \\ & \\ \sin (A+B) & = \frac{h}{15} \\ & = \frac{14\cos B}{15} \\ & = \frac{14}{15}\bigg( \frac{12}{13} \bigg) \\ & = \frac{56}{65} \\ \end{aligned}

(iii. differential)

That angles A and B are acute angles, i.e.,

0<B<A<90^\circ

does not imply A+B is also an acute angle, but that

0<A+B<180^\circ.

© 2010 Geek3 / GNU-FDL, https://commons.wikimedia.org/wiki/File:Sine_cosine_one_period.svg

such that

\begin{aligned} 0 & <\sin (A+B)<1 \\ -1 & <\cos (A+B)<1 \\ 0 & <\sin B<\sin A<\cos A<\cos B < 1\\ \end{aligned}

Letting f(x)=\sin x,

\begin{aligned} &\quad \textrm{Area under curve }f(x)\textrm{ in }x\in [0,A+B] \\ & = \int_{0}^{A+B}f(x)\,\mathrm{d}x \\ & = \int_{0}^{A+B}\sin (x)\,\mathrm{d}x \\ & = \big[-\cos x\big]_{0}^{A+B} \\ & = 1-\cos (A+B) \\ \end{aligned}

\begin{aligned} &\quad \textrm{Area under curve }f(x)\textrm{ in }x\in [0,A] \\ & = \int_{0}^{A}f(x)\,\mathrm{d}x \\ & = \int_{0}^{A}\sin (x)\,\mathrm{d}x \\ & = \big[-\cos x\big]_{0}^{A} \\ & = 1-\cos A \\ & = 1-\frac{4}{5} \\ & = \frac{1}{5} \\ \end{aligned}

\begin{aligned} &\quad \textrm{Area under curve }f(x)\textrm{ in }x\in [0,B] \\ & = \int_{0}^{B}f(x)\,\mathrm{d}x \\ & = \int_{0}^{B}\sin (x)\,\mathrm{d}x \\ & = \big[-\cos x\big]_{0}^{B} \\ & = 1-\cos B \\ & = 1-\frac{12}{13} \\ & = \frac{1}{13} \\ \end{aligned}

\begin{aligned} &\quad \textrm{Area under curve }f(x)\textrm{ in }x\in [B,A] \\ & = \frac{1}{5}-\frac{1}{13} \\ & = \frac{8}{65} \\ \end{aligned}

\begin{aligned} &\quad \textrm{Area under curve }f(x)\textrm{ in }x\in [A,A+B] \\ & = 1-\cos (A+B) - \frac{1}{5} \\ & = \frac{4}{5}-\cos (A+B) \\ \end{aligned}

then letting g(x)=\cos x, and noting in a right-angled triangle the cosine of an angle admits of no negative values, so can it further be said

\begin{aligned} & \quad\enspace 0<g(x)<1 \\ &\Rightarrow 0<g(A+B)<1 \\ &\Rightarrow 0<A+B<90^\circ \\ \end{aligned}


I lost my way…


Let w(u(t),v(t))=u(t)-v(t) be the difference in degrees between time-varying angles u and v where assumed is u(t)>v(t) without loss of generality.

\begin{aligned} f(u,v,w) & \stackrel{\textrm{def}}{=} \sin (u+v) \\ & = \sin (2v+w ) \\ & = \sin (2u-w ) \\ & \\ g(u,v,w) &\stackrel{\textrm{def}}{=} \cos (u+v) \\ & = \cos (2v+w ) \\ & = \cos (2u-w ) \\ \end{aligned}

Taking partial derivatives wrt u, v, w, and t:

\begin{aligned} \partial_uf(u,v,w) & = 2\cos (2u-w) \\ \partial_vf(u,v,w) & = 2\cos (2v+w) \\ \partial_wf(u,v,w) & = 0 \\ \partial_tf(u,v,w) & = (u'+v')\cos (u+v)\\ \end{aligned}

\begin{aligned} \mathrm{d}f(u,v,w) & = \partial_uf\,\mathrm{d}u + \partial_vf\,\mathrm{d}v + \partial_wf\,\mathrm{d}w \\ & = 2\cos (2u-w )\,\mathrm{d}u + 2\cos (2v+w )\,\mathrm{d}v + 0 \\ \dots\,\mathrm{d}u & =  \mathrm{d}v+\mathrm{d}w\,\dots \\ & = 4\cos (u+v)\,\mathrm{d}v + 2\cos (u+v)\,\mathrm{d}w \\ & = 2\big(\cos (u+v)\big)(2\,\mathrm{d}v+\mathrm{d}w) \\ \end{aligned}


I lost my faith…


If

f(x,y)\stackrel{\textrm{(1)}}{=}\sin (x+y)

then

f(x'=x+y,0)\stackrel{\textrm{(2)}}{=} f(x,y)\stackrel{\textrm{(3)}}{=} f(0,x+y=y').

By equality \textrm{(1)} it states that the output value f(x,y) of f(\texttt{var1},\texttt{var2}) is determined by input values of two arguments (\texttt{var1},\texttt{var2})=(x,y);

by equality \textrm{(2)} that the output value f(x,y) of f(\texttt{var1},\texttt{var2}) is determined by input values (\texttt{var1},\texttt{var2})=(x+y,0), i.e., by one significant argument \texttt{var1}=x+y, and another trivial argument \texttt{var2}=0; and

by equality \textrm{(3)} that the output value f(x,y) of f(\texttt{var1},\texttt{var2}) is determined by input values (\texttt{var1},\texttt{var2})=(0,x+y), i.e., by one trivial argument \texttt{var1}=0, and another significant argument \texttt{var2}=x+y.

Hence, assuming a partial variation

\begin{aligned} &\quad\enspace \sin (\texttt{var1}+\texttt{var2}) \\ & = k_1(\texttt{var1},\texttt{var2})\sin (\texttt{var1}) + k_2(\texttt{var1},\texttt{var2})\sin (\texttt{var2}) \\ \end{aligned}

we WTS the following

\begin{aligned} k_1(\texttt{var1},\texttt{var2}) & = \cos (\texttt{var2}) \\ k_2(\texttt{var1},\texttt{var2}) & = \cos (\texttt{var1}) \\ \end{aligned}

LHS:

\begin{aligned} &\quad\enspace \frac{\mathrm{d}}{\mathrm{d}t}\sin (\texttt{var1}+\texttt{var2}) \\ & = \big[\cos (\texttt{var1}+\texttt{var2})\big] (\texttt{var1}'+\texttt{var2}') \\ \end{aligned}

RHS:

\begin{aligned} &\quad\enspace \frac{\mathrm{d}}{\mathrm{d}t}(k_1\sin (\texttt{var1})+k_2\sin (\texttt{var2})) \\ & = \big(k_1'\cos (\texttt{var1})\big) \texttt{var1}' + \big(k_2'\cos (\texttt{var2})\big) \texttt{var2}' \\ \end{aligned}

and LHS=RHS implies:

\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}k_1 & = \frac{\cos (\texttt{var1}+\texttt{var2})}{\cos (\texttt{var1})} \\ \frac{\mathrm{d}}{\mathrm{d}t}k_2 & = \frac{\cos (\texttt{var1}+\texttt{var2})}{\cos (\texttt{var2})} \\ \dots & \dots \dots \dots \\ k_1' & = \bigg( \frac{\cos (\texttt{var2})}{\cos (\texttt{var1})}\bigg) k_2' \\ \end{aligned}

 

(to be continued)

202310121132 Pastime Exercise 005

The blogger claims no originality of his problem below.

Below is a \textrm{3-D} graph of the customary quadratic equation on the flat xy-plane at some level of z=d:

where the discriminant is \Delta =b^2-4ac.


Setup.

Let ten operators \hat{Q}_1, \hat{Q}_2, \hat{Q}_3, \hat{Q}_4, \hat{Q}_5, \hat{Q}_6, \hat{Q}_7, \hat{Q}_8, \hat{Q}_9, and \hat{Q}_{10} be defined as such that follow:

Of the curve f(x,y,z)\big|_{z=d}=0,

\hat{Q}_1: a horizontal translation along (\pm\textrm{ve})\, x-direction;
\hat{Q}_2: a vertical translation along (\pm\textrm{ve})\, y-direction.
\hat{Q}_3: a horizontal scaling by a (\pm\textrm{ve}) factor;
\hat{Q}_4: a vertical scaling by a (\pm\textrm{ve}) factor;
\hat{Q}_5: a(n) anti-/clockwise rotation about a normal on the xy-plane;
\hat{Q}_6: a horizontal reflection over a vertical line parallel to the y-axis;
\hat{Q}_7: a vertical reflection over a horizontal line parallel to the x-axis;
\hat{Q}_8: an oblique reflection over a slanted line on the xy-plane;
\hat{Q}_9: a tilting about the (\pm\textrm{ve})\,y-axis;
\hat{Q}_{10}: a tilting about the (\pm\textrm{ve})\,z-axis.


Problem.

(a) Describe the ten operators explicitly in the form of some linear functions.

(b) Does it matter to have one operator performed with some priority over another in order to give a curve and the only curve after multiple transformations? If you think so, list them in order; if not, give a counterexample that any two sequences of execution are able to reach the same result.


This problem is not to be attempted.