202303141200 Exercise 7.7.1

Consider the coordinate transformation (x,y)=G(u,v) given by

G(u,v)=(au,bv) for (u,v)\in\mathbb{R}^2

where a and b are positive constants.

(a) Prove that G is \textrm{1--1} on \mathbb{R}^2.
(b) Show that G maps the circular disc

K=\{(u,v)\in\mathbb{R}^2 : u^2+v^2\leqslant 1\}

in the u, v plane onto the elliptical disc

G(K)=\{(x,y)\in\mathbb{R}^2 : x^2/a^2+y^2/b^2\leqslant 1\}

in the x, y plane.
(c) Calculate \mathrm{det}\,J_{G,(u,v)}.
(d) Calculate, using Theorem 7.7.5, the area of the elliptical disc G(K). (Assume known that the area of K is \pi.)

Extracted from P. R. Baxandall. (1986). Vector Calculus.


Roughwork.

Symbolically,

\forall\, a,b\in X,\quad f(a)=f(b)\Rightarrow a=b,

or the contrapositive

\forall\, a,b\in X,\quad a\neq b\Rightarrow f(a)\neq f(b).

Wikipedia on Injective function

(a)

From G:\mathbb{R}^2\to\mathbb{R}^2:(u,v)\mapsto (x=au,y=bv),

\begin{aligned} & \enspace & (x_1,y_1)=G(u_1,v_1) & = G(u_2,v_2)=(x_2,y_2) \\ \Rightarrow & \enspace & (au_1,bv_1) & = (au_2,bv_2) \\ \Rightarrow & \enspace & (u_1,v_1) & = (u_2,v_2) \\ \end{aligned}

(b) Obvious.

(c)

\begin{aligned} J_{G}(u,v) & = \begin{bmatrix} \partial_u(au)&\partial_v(au) \\ \partial_u(bv) & \partial_v(bv) \\ \end{bmatrix} \\ & = \begin{bmatrix} a & 0 \\ 0 & b \\ \end{bmatrix} \\ \mathrm{det}\,J_{G,(u,v)} & = ab \\ \end{aligned}

(d)

Theorem (Change of variables).  Let G:K\subseteq \mathbb{R}^2\to\mathbb{R}^2 be a C^1 function defined on a compact set K in \mathbb{R}^2, and let D\subseteq K be an open subset of \mathbb{R}^2 such that

i. K\backslash D is a null set,
ii. G is \textrm{1--1} on D,
iii. \mathrm{det}\,J_{G,(u,v)}\neq 0 for all (u,v)\in D.

Then, for any bounded function f:G(K)\subseteq\mathbb{R}^2\to\mathbb{R} which is continuous on G(D)

\displaystyle{\iint_{G(K)}f(x,y)\,\mathrm{d}x\,\mathrm{d}y=\iint_{K}f(G(u,v))|\mathrm{det}\,J_{G,(u,v)}|\,\mathrm{d}u\,\mathrm{d}v}.

See Theorem 7.7.5 on pg. 404.

The area of the elliptical disc G(K) is \pi ab.

This problem is not to be attempted.

202303141137 Exercise 2.7.1

Calculate the lengths of the following smooth simple arcs in \mathbb{R}^3.

(a) The circular helix parametrized by

f(t)=(t,\cos t,\sin t)

where t\in [a,b];
(b) the curve parametrized by

f(t)=(e^t\cos t,e^t\sin t,e^t)

where t\in [0,k].

Extracted from P. R. Baxandall. (1986). Vector Calculus.


Roughwork.

Let f:[a,b]\subseteq\mathbb{R}\to\mathbb{R}^n be a C^1 path in \mathbb{R}^n. The length of f is defined to be

l(f)=\displaystyle{\int_{a}^{b}\|f'(t)\|\,\mathrm{d}t}.

See Definition 2.7.2 on pg.60

(a)

\begin{aligned} f(t) & = (t,\cos t,\sin t) \\ f'(t) & = (1,-\sin t,\cos t) \\ \|f'(t)\| & = \sqrt{(1)^2+(-\sin t)^2+(\cos t)^2} \\ & = \sqrt{2} \\ l(f) & = \int_{a}^{b} \sqrt{2}\,\mathrm{d}t \\ & = \sqrt{2}(b-a) \\ \end{aligned}

(b) Not to be attempted.