202303270928 Problem 1.1.1

Let F_1, F_2, F_3, … be the Fibonacci sequence. Prove that

F_{n+1}F_{n+2}-F_{n}F_{n+3}=(-1)^n

for all positive integers n.

Extracted from A. P. Hillman. (1999). Abstract Algebra A First Undergraduate Course.


Roughwork.

Let P(n) be the statement to prove. When n=1,

P(1):\quad F_{2}F_{3}-F_{1}F_{4}\stackrel{\textrm{?}}{=}-1

is to check.

\begin{aligned} F_1 & = 1\\ F_2 & = 1\\ F_3 & = 2\\ F_4 & = 3\\ \dots & \dots \\ F_{n} & = F_{n-1} + F_{n-2}\quad\textrm{for integers }n\geqslant 3 \\ \end{aligned}

First, P(1) is true.

Next, be P(n) true. WTS P(n+1) true whenever P(n) true:

\begin{aligned} P(n+1): & \quad F_{(n+1)+1}F_{(n+1)+2}-F_{n+1}F_{(n+1)+3}\stackrel{\textrm{?}}{=}(-1)^{n+1} \\ \textrm{LHS} & = F_{n+2}F_{n+3}-F_{n+1}F_{n+4} \\ & = (F_{n+1}+F_n)F_{n+3}-F_{n+1}(F_{n+3}+F_{n+2})\\ & = F_{n}F_{n+3}-F_{n+1}F_{n+2} \\ & = -(F_{n+1}F_{n+2}-F_{n}F_{n+3}) \\ & \stackrel{.}{=} -((-1)^n) \\ & = (-1)^{n+1} \\ & = \textrm{RHS} \\ \end{aligned}

Lastly, as P(1) true and P(n)\Rightarrow P(n+1), by principle of mathematical induction, the statement is proven for all n\in\mathbb{Z}^+.

202303150916 Exercise 4.6.4

Let f:\mathbb{R}^2\to\mathbb{R}^2 be defined by

f(x,y)=(x^3+y^3,x^3-y^3) for (x,y)\in\mathbb{R}^2.

Prove that the Jacobian matrix J_{f,(0,0)} is the zero matrix. Show that nevertheless f is globally invertible on \mathbb{R}^2. [Hint: prove that f is \textrm{1--1} on \mathbb{R}^2.] Show also that the inverse function is not differentiable at f(0,0)=(0,0).

Extracted from P. R. Baxandall. (1986). Vector Calculus.


Roughwork.

\begin{aligned} f\bigg(\begin{bmatrix}x\\y\end{bmatrix}\bigg) & = \begin{bmatrix} x^3+y^3 \\ x^3-y^3 \end{bmatrix} \\ J_{f,(x,y)} & = \begin{bmatrix} \partial_x (x^3+y^3) & \partial_y(x^3+y^3) \\ \partial_x(x^3-y^3) & \partial_y(x^3-y^3) \\ \end{bmatrix} \\ & = \begin{bmatrix} 3x^2 & 3y^2 \\ 3x^2 & -3y^2 \\ \end{bmatrix} \\ J_{f,(0,0)} & = \begin{bmatrix} 3(0)^2 & 3(0)^2 \\ 3(0)^2 & -3(0)^2 \end{bmatrix} \\ & = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \end{bmatrix} \\ \end{aligned}

The function f:\mathbb{R}^n\to\mathbb{R}^n is locally invertible at \mathbf{x}_0 if there is an \epsilon >0 and a function g:B_{\epsilon}(f(\mathbf{x}_0))\to\mathbb{R}^n such that

\begin{cases} f\circ g(\mathbf{y}) \equiv \mathbf{y}\quad\textrm{for }\mathbf{y}\in B_{\epsilon}(f(\mathbf{x}_0)) \\ g\circ f(\mathbf{x}) \equiv \mathbf{x}\quad \textrm{for }\mathbf{x}\in B_{\epsilon}(\mathbf{x}_0) \\ \end{cases}

Luca Rigotti. (2015). University of Pittsburgh, ECON2001 Lecture 12

I should have felt no hesitation in applying the inverse function theorem but for some difficulties when interpreting

\begin{aligned} &\quad\enspace\textrm{ locally invertible everywhere} \\ & \nLeftrightarrow \textrm{ globally invertible} \\ \end{aligned}

(to be continued)

202303141200 Exercise 7.7.1

Consider the coordinate transformation (x,y)=G(u,v) given by

G(u,v)=(au,bv) for (u,v)\in\mathbb{R}^2

where a and b are positive constants.

(a) Prove that G is \textrm{1--1} on \mathbb{R}^2.
(b) Show that G maps the circular disc

K=\{(u,v)\in\mathbb{R}^2 : u^2+v^2\leqslant 1\}

in the u, v plane onto the elliptical disc

G(K)=\{(x,y)\in\mathbb{R}^2 : x^2/a^2+y^2/b^2\leqslant 1\}

in the x, y plane.
(c) Calculate \mathrm{det}\,J_{G,(u,v)}.
(d) Calculate, using Theorem 7.7.5, the area of the elliptical disc G(K). (Assume known that the area of K is \pi.)

Extracted from P. R. Baxandall. (1986). Vector Calculus.


Roughwork.

Symbolically,

\forall\, a,b\in X,\quad f(a)=f(b)\Rightarrow a=b,

or the contrapositive

\forall\, a,b\in X,\quad a\neq b\Rightarrow f(a)\neq f(b).

Wikipedia on Injective function

(a)

From G:\mathbb{R}^2\to\mathbb{R}^2:(u,v)\mapsto (x=au,y=bv),

\begin{aligned} & \enspace & (x_1,y_1)=G(u_1,v_1) & = G(u_2,v_2)=(x_2,y_2) \\ \Rightarrow & \enspace & (au_1,bv_1) & = (au_2,bv_2) \\ \Rightarrow & \enspace & (u_1,v_1) & = (u_2,v_2) \\ \end{aligned}

(b) Obvious.

(c)

\begin{aligned} J_{G}(u,v) & = \begin{bmatrix} \partial_u(au)&\partial_v(au) \\ \partial_u(bv) & \partial_v(bv) \\ \end{bmatrix} \\ & = \begin{bmatrix} a & 0 \\ 0 & b \\ \end{bmatrix} \\ \mathrm{det}\,J_{G,(u,v)} & = ab \\ \end{aligned}

(d)

Theorem (Change of variables).  Let G:K\subseteq \mathbb{R}^2\to\mathbb{R}^2 be a C^1 function defined on a compact set K in \mathbb{R}^2, and let D\subseteq K be an open subset of \mathbb{R}^2 such that

i. K\backslash D is a null set,
ii. G is \textrm{1--1} on D,
iii. \mathrm{det}\,J_{G,(u,v)}\neq 0 for all (u,v)\in D.

Then, for any bounded function f:G(K)\subseteq\mathbb{R}^2\to\mathbb{R} which is continuous on G(D)

\displaystyle{\iint_{G(K)}f(x,y)\,\mathrm{d}x\,\mathrm{d}y=\iint_{K}f(G(u,v))|\mathrm{det}\,J_{G,(u,v)}|\,\mathrm{d}u\,\mathrm{d}v}.

See Theorem 7.7.5 on pg. 404.

The area of the elliptical disc G(K) is \pi ab.

This problem is not to be attempted.

202303141137 Exercise 2.7.1

Calculate the lengths of the following smooth simple arcs in \mathbb{R}^3.

(a) The circular helix parametrized by

f(t)=(t,\cos t,\sin t)

where t\in [a,b];
(b) the curve parametrized by

f(t)=(e^t\cos t,e^t\sin t,e^t)

where t\in [0,k].

Extracted from P. R. Baxandall. (1986). Vector Calculus.


Roughwork.

Let f:[a,b]\subseteq\mathbb{R}\to\mathbb{R}^n be a C^1 path in \mathbb{R}^n. The length of f is defined to be

l(f)=\displaystyle{\int_{a}^{b}\|f'(t)\|\,\mathrm{d}t}.

See Definition 2.7.2 on pg.60

(a)

\begin{aligned} f(t) & = (t,\cos t,\sin t) \\ f'(t) & = (1,-\sin t,\cos t) \\ \|f'(t)\| & = \sqrt{(1)^2+(-\sin t)^2+(\cos t)^2} \\ & = \sqrt{2} \\ l(f) & = \int_{a}^{b} \sqrt{2}\,\mathrm{d}t \\ & = \sqrt{2}(b-a) \\ \end{aligned}

(b) Not to be attempted.