202302200931 Review Problem 6.5.7

Let z\in\mathbb{C}. Recall that z=x+iy for some x,y\in\mathbb{R}, and we can form the complex conjugate of z by taking \overline{z}=x-iy. The function c:\mathbb{R}^2\to\mathbb{R}^2 which sends (x,y)\mapsto (x,-y) agrees with complex conjugation.

(a) Show that c is a linear map over \mathbb{R} (i.e., scalars in \mathbb{R}).
(b) Show that \overline{z} is not linear over \mathbb{C}.

Extracted from D. Cherney, et al. (2013). Linear Algebra.


Roughwork.

A function L:V\to W is linear if V and W are vector spaces and

L(ru+sv)=rL(u)+sL(v)

for all u,v\in V and r,s\in\mathbb{R}.

(a)

\begin{aligned} c(az_1+bz_2) & = c(a(x_1+iy_1)+b(x_2+iy_2)) \\ & = c((ax_1+bx_2)+i(ay_1+by_2)) \\ & = (ax_1+bx_2)+i(-(ay_1+by_2)) \\ & = (ax_1+bx_2)-i(ay_1+by_2) \\ & = a(x_1-iy_1) + b(x_2-iy_2) \\ & = a(x_1+i(-y_1)) + b(x_2+i(-y_2)) \\ & = a(c(x_1+iy_1)) + b(c(x_2+iy_2)) \\ & = ac(z_1) + bc(z_2) \\ \end{aligned}

(b)

Not to be attempted.