202212281204 Solution to 2015-DSE-PHY-IA-5

A constant net force acting on an object of mass m_1 produces an acceleration a_1 while the same force acting on another object of mass m_2 produces an acceleration a_2. If this net force acts on an object of mass (m_1+m_2), what would be the acceleration produced?


Roughwork.

Write

\begin{aligned} F_\textrm{net} & = m_1a_1 = m_2a_2 \\ & = (m_1+m_2)a_3 \\ \end{aligned}

Provided are four options. Let’s check them one by one.

A. a_3\stackrel{?}{=}a_1+a_2

\begin{aligned} (m_1+m_2)a_3 & = (m_1+m_2)(a_1+a_2) \\ & = (m_1a_1) + (m_2a_2) +m_1a_2+m_2a_1 \\ & = F_\textrm{net} + F_\textrm{net} +m_1a_2+m_2a_1 \\ & \gneq 2F_\textrm{net} \\ \therefore\enspace a_3 & \neq a_1+a_2 \\ \end{aligned}

B. a_3\stackrel{?}{=}\displaystyle{\frac{a_1+a_2}{2}}

\begin{aligned} (m_1+m_2)a_3 & = (m_1+m_2)\bigg(\frac{a_1+a_2}{2}\bigg) \\ & \stackrel{\textrm{(A)}}{=} F_\textrm{net} + \frac{m_1a_2+m_2a_1}{2} \\ & \gneq F_\textrm{net} \\ \therefore\enspace a_3 & \neq \frac{a_1+a_2}{2} \\ \end{aligned}

C. a_3\stackrel{?}{=}\displaystyle{\frac{a_1a_2}{a_1+a_2}}

\begin{aligned} (m_1+m_2)a_3 & = (m_1+m_2)\bigg(\frac{a_1a_2}{a_1+a_2}\bigg) \\ & = \frac{(m_1a_1)a_2+(m_2a_2)a_1}{a_1+a_2} \\ & = \frac{(F_\textrm{net})(a_1+a_2)}{a_1+a_2} \\ & = F_\textrm{net} \\ \therefore\enspace a_3 & = \frac{a_1a_2}{a_1+a_2} \\ \end{aligned}

D. a_3\stackrel{?}{=}\displaystyle{\frac{2a_1a_2}{a_1+a_2}} is so not to check.

Try-and-err was slower if steadier paced than fright-but-fight from head start,

\begin{aligned} a_3 & = \frac{F_\textrm{net}}{m_1+m_2} \\ & = \bigg(\frac{m_1}{F_\textrm{net}}+\frac{m_2}{F_\textrm{net}}\bigg)^{-1} \\ & = \bigg(\frac{1}{a_1}+\frac{1}{a_2}\bigg)^{-1} \\ & = \bigg(\frac{a_1+a_2}{a_1a_2}\bigg)^{-1} \\ & = \frac{a_1a_2}{a_1+a_2} \\ \end{aligned}

And the answer is C.

This problem is not to be attempted.