Skip to content

Physicspupil

物理子衿

Day: December 21, 2022

Posted on December 21, 2022December 21, 2022

202212211715 Solution to 1968-CE-AMATH-II-X

Find \displaystyle{\int\frac{\mathrm{d}x}{\sqrt{9-4x^2}}}

i. by using the substitution \displaystyle{x=\frac{3}{2}\cos\theta};
ii. by using the substitution \displaystyle{x=\frac{3}{2}\sin\theta}.

Explain why you appear to get two different answers.


Roughwork.

i.

\begin{aligned} &\quad\enspace \int \frac{1}{\sqrt{9-4x^2}}\,\mathrm{d}x \\ \dots\, & \textrm{let }x=\frac{3}{2}\cos\theta \textrm{ s.t. }\mathrm{d}x=-\frac{3}{2}\sin\theta\,\mathrm{d}\theta \,\dots \\ & = -\int \frac{3\sin\theta}{2\sqrt{9-4(\frac{3}{2}\cos\theta )^2}}\,\mathrm{d}\theta \\ & = -\int \frac{3\sin\theta}{6\sin\theta}\,\mathrm{d}\theta \\ & = -\frac{\theta}{2} +C_1\textrm{ for some constant}\\ & = -\frac{1}{2}\arccos \bigg(\frac{2x}{3}\bigg) +C_1 \\ \end{aligned}

ii.

\begin{aligned} &\quad\enspace \int \frac{1}{\sqrt{9-4x^2}}\,\mathrm{d}x \\ \dots\, & \textrm{let }x=\frac{3}{2}\sin\theta \textrm{ s.t. }\mathrm{d}x=\frac{3}{2}\cos\theta\,\mathrm{d}\theta \,\dots \\ & = \int \frac{3\cos\theta}{2\sqrt{9-4(\frac{3}{2}\sin\theta )^2}}\,\mathrm{d}\theta \\ & = \int \frac{3\cos\theta}{6\cos\theta}\,\mathrm{d}\theta \\ & = \frac{\theta}{2} +C_2\textrm{ for some constant} \\ & = \frac{1}{2}\arcsin \bigg(\frac{2x}{3}\bigg) +C_2 \\ \end{aligned}

Let’s see if

\displaystyle{-\frac{1}{2}\arccos\bigg(\frac{2x}{3}\bigg) +C_1 \stackrel{\textrm{?}}{\equiv}\frac{1}{2}\arcsin\bigg(\frac{2x}{3}\bigg)} + C_2

or, to be rephrased, whether

\displaystyle{\frac{\mathrm{d}}{\mathrm{d}x}\bigg[\arcsin \bigg(\frac{2x}{3}\bigg) + \arccos\bigg(\frac{2x}{3}\bigg) \bigg]\stackrel{\textrm{?}}{\equiv} 0}

This is left an exercise for the reader.

Posted on December 21, 2022December 21, 2022

202212211654 Solution to 2009-CE-AMATH-II-6

C is a curve with equation y^3+x^3y=10.

(a) Find \displaystyle{\frac{\mathrm{d}y}{\mathrm{d}x}}.
(b) Find the equation of the tangent to the curve C at the point (1,2).


Roughwork.

\begin{aligned} y^3+x^3y & = 10 \\ 3y^2\,\mathrm{d}y+x^3\,\mathrm{d}y+3x^2y\,\mathrm{d}x & = 0 \\ -\frac{3x^2y}{x^3+3y^2} = \frac{\mathrm{d}y}{\mathrm{d}x} & = y'(x,y) \\ \end{aligned}

\displaystyle{y'(1,2)=-\frac{3(1)^2(2)}{(1)^3+3(2)^2}=-\frac{6}{13}}

\begin{aligned} &\quad\enspace \frac{y-2}{x-1} = -\frac{6}{13} \\ & \Rightarrow \big\{ L:\quad 6x+13y-32 = 0\big\} \\ \end{aligned}

This problem is not to be attempted.

Posted on December 21, 2022December 21, 2022

202212211306 Solution to 1987-CE-AMATH-I-2

Let x=y+\sin y. Find \displaystyle{\frac{\mathrm{d}y}{\mathrm{d}x}} and \displaystyle{\frac{\mathrm{d}^2y}{\mathrm{d}x^2}} in terms of y.


Roughwork.

\begin{aligned} x & = y+\sin y \\ \mathrm{d}x & = \mathrm{d}y+\cos y\,\mathrm{d}y \\ \frac{\mathrm{d}y}{\mathrm{d}x} & = \frac{1}{1+\cos y} \\ \bigg(\frac{\mathrm{d}y}{\mathrm{d}x}\bigg)^2 & = \frac{1}{(1+\cos y)^2} \\ \frac{\mathrm{d}}{\mathrm{d}x}\bigg(\frac{\mathrm{d}y}{\mathrm{d}x}\bigg)^2 & = 2\bigg(\frac{\mathrm{d}y}{\mathrm{d}x}\bigg)\bigg(\frac{\mathrm{d}^2y}{\mathrm{d}x^2}\bigg) \\ \end{aligned}

\begin{aligned} \frac{\mathrm{d}^2y}{\mathrm{d}x^2} & = \frac{1+\cos y}{2}\cdot \frac{\mathrm{d}}{\mathrm{d}x}\bigg(\frac{1}{(1+\cos y)^2}\bigg) \\ \end{aligned}

\begin{aligned} &\quad\enspace \frac{\mathrm{d}}{\mathrm{d}x}\bigg(\frac{1}{(1+\cos y)^2}\bigg) \\ &= (-2)(1+\cos y)^{-3}(-\sin y)\bigg( \frac{\mathrm{d}y}{\mathrm{d}x}\bigg) \\ &= (-2)(1+\cos y)^{-3}(-\sin y)\bigg(\frac{1}{1+\cos y}\bigg) \\ & = \frac{2\sin y}{(1+\cos y)^4} \\ \end{aligned}

\begin{aligned} \quad\enspace \frac{\mathrm{d}^2y}{\mathrm{d}x^2} & = \frac{1+\cos y}{2}\cdot \frac{2\sin y}{(1+\cos y)^4} \\ & = \frac{\sin y}{(1+\cos y)^3} \\ \end{aligned}

Stretching the focus, compromise the better for it.

Posted on December 21, 2022December 21, 2022

202212211204 Solution to 1972-CE-AMATH-I-X

F(x)\equiv A(x-1)^2+B(x-1)+C where A, B, and C are constants. Find the values of A, B, and C, given that (x+2) is a factor of F(x) and that the remainders when F(x) is divided by (x-1) and (x+1) are 9 and -11 respectively.


Roughwork.

\begin{aligned} & \quad\enspace (x+2)\textrm{ is a factor of }F(x) \\ & \Leftrightarrow F(x)=(x+2)\cdot G(x) \\ & \Leftrightarrow F(-2)=0 \\ & \Leftrightarrow A((-2)-1)^2+B((-2)-1)+C=0 \\ \end{aligned}

\begin{aligned} & \quad\enspace \mathrm{9}\textrm{ remains when dividing }F(x)\textrm{ by }(x-1) \\ &\Leftrightarrow F(1)=C=9 \\ \end{aligned}

\begin{aligned} & \quad\enspace \mathrm{-11}\textrm{ remains when dividing }F(x)\textrm{ by }(x+1) \\ &\Leftrightarrow F(-1)=A((-1)-1)^2+B((-1)-1)+C=-11 \\ \end{aligned}

This problem is not to be attempted.

Last Webpage Refresh Time:

January 30, 2026 11:32 am

物理後生﹑掣數學之肘.
小子算數﹑指物理之月.

Recent Posts

  • 202507031737 心相續流
  • 202505101654 學而
  • 202412100018 Cognates
  • 202409051606 Pastime Exercise 012
  • 202408221017 Exercise 5.68

Navigation Menu

  • Astrophysics *
  • Continuum Mechanics *
    • Goldstein’s Classical Mechanics
    • Kinematics Graphs and Dynamics Figures (Only Kidding)
    • Work, Energy, and Power (Only Kidding)
    • Projectile Motion (Only Kidding)
  • Quantum Mechanics *
    • Menu of Quantum Mechanics
    • Trial and Error
  • Statistical Mechanics *
  • Electrodynamics *
    • D. J. Griffiths’s Introduction to Electrodynamics
    • Electrostatics (Only Kidding)
    • Electrostatics Diagrams (Only Kidding)
    • Electric Circuits (Only Kidding)
    • Electric Circuit Diagrams (Only Kidding)
  • General Relativity *
    • Foster and Nightingale’s A Short Course in General Relativity (3e)
    • Martin’s General Relativity: A First Course For Physicists
    • Moore’s A General Relativity Workbook
  • Thermodynamics *
  • Experimental Physics
    • Instrumental Laboratories
  • Public Examinations in Mathematics
    • Additional Mathematics – Hong Kong Certificate of Education (HKCE)
    • Applied Mathematics – Hong Kong Advanced Level (HKAL)
    • Mathematics Compulsory and Extended – Hong Kong Diploma of Secondary Education (HKDSE)
    • Mathematics High Level (HL) – International Baccalaureate (IB)
  • Public Examinations in Physics
    • Hong Kong Advanced Level Examination (HKALE)
    • Hong Kong Diploma of Secondary Education Examination (HKDSEE)
    • Hong Kong Certificate of Education Examination (HKCEE)
    • Hong Kong Higher Level Examination (HKHLE)
    • International Baccalaureate Higher Level Examination (IBHLE)
  • The Physics Computer
    • C programming
    • Lisp programming
    • Python programming
    • SQL Tables
  • The Physics Language
    • Abstract Algebra
    • Algebraic Geometry
    • Calculus
    • Complex Analysis
    • Differential Equations
    • Differential Geometry
    • Finite Mathematics
    • Linear Algebra
    • Mathematical Proofs
    • Miscellaneous
    • Multivariate Calculus
    • Numerical Analysis
    • Real Analysis
    • Topology
    • Typesetting Exercises
  • Scientific Literacy
    • Reading Comprehension
  • The Physics Design
    • Autodesk Maya | Blender
    • AxGlyph | The Geometer’s Sketchpad
    • Inkscape | LaTeX Tikz
    • Microsoft Paint | LibreOffice Draw
  • Uncategorized
    • If I could only sing
    • How I wish to draw
    • What I worth the read
  • Staging Zone
    • Dot grammar one
December 2022
M T W T F S S
 1234
567891011
12131415161718
19202122232425
262728293031  
« Nov   Jan »
Proudly powered by WordPress