Skip to content

Physicspupil

物理子衿

Day: December 13, 2022

Posted on December 13, 2022December 13, 2022

202212131615 Solution to 1989-CE-AMATH-I-6

p and q are real numbers such that

(p+qi)^2=21-20i.

Find the values of p and q. Hence write down the two square roots of 21-20i.


Roughwork.

\begin{aligned} \textrm{LHS} & = (p+qi)^2 \\ & = (p^2-q^2)+(2pq)i \\ \textrm{RHS} & = (21)+(-20)i \\ \end{aligned}

\begin{cases} p^2-q^2=21 \\ pq = -10 \end{cases}

\therefore (p,q)=(\pm 5,\mp 2).

Posted on December 13, 2022December 13, 2022

202212131544 Solution to 1975-CE-AMATH-I-X

A rod PQ of length 4 units slides with P on the x-axis and Q on the y-axis. R is the point on PQ such that PR:RQ=1:3. Find the equation of the locus of R.


Roughwork.

Let P=(a,0) and Q=(0,b) where a,b\in [0,4] and a^2+b^2=(4)^2. The locus of R(x,y) is

\begin{aligned} &\quad\enspace \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{3}{4}a \\ \frac{1}{4}b \end{pmatrix} \\ &\Longrightarrow \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \frac{4}{3}x \\ 4y \end{pmatrix} \\ &\Longrightarrow \bigg(\frac{4}{3}x\bigg)^2+ (4y)^2 = 16 \\ &\Longrightarrow \enspace R:\big\{ x^2+9y^2-9=0\big\} \\ \end{aligned}

This problem is not to be attempted.

Posted on December 13, 2022December 13, 2022

202212131509 Solution to 1985-CE-AMATH-II-6

Find the equations of the two tangents drawn from the point (-1,0) to the parabola y^2=4x.


Roughwork.

\begin{aligned} y^2 & = 4x \\ 2y\,\mathrm{d}y & = 4\,\mathrm{d}x \\ \frac{\mathrm{d}y}{\mathrm{d}x} & = \frac{2}{y} \\ \end{aligned}

Let (a_1,b_1) and (a_2,b_2) be two points at which the two tangents touches the parabola. Then,

\displaystyle{\frac{2}{b_i} =\frac{\mathrm{d}y}{\mathrm{d}x}\bigg|_{(a_i,b_i)} =\frac{b_i-(0)}{a_i-(-1)}}

By solving two equations in two unknowns:

\begin{cases} b_i^2 = 2a_i+2 \\ b_i^2 = 4a_i \\ \end{cases} \Longrightarrow\quad \begin{pmatrix} a_i\\b_i \end{pmatrix}_{i=1,2} = \Bigg\{ \begin{pmatrix} 1\\ 2 \end{pmatrix} , \begin{pmatrix} 1 \\ -2 \end{pmatrix} \Bigg\}

This problem is not to be attempted.

Posted on December 13, 2022December 13, 2022

202212131316 Solution to 1983-CE-AMATH-II-3

Use the substitution

u=1+3x^2

to evaluate

\displaystyle{\int_{0}^{1}x^3\sqrt{1+3x^2}\,\mathrm{d}x}.


Roughwork.

\begin{aligned} & \quad\enspace \int_{0}^{1}x^3\sqrt{1+3x^2}\,\mathrm{d}x \\ \dots &\textrm{ let }x=\frac{\tan\theta}{\sqrt{3}}\textrm{ so that }\dots \\ \dots &\textrm{ }\mathrm{d}x=\frac{1}{\sqrt{3}}\sec^2\theta\,\mathrm{d}\theta\textrm{ }\dots \\ \dots &\textrm{ }x=0\Leftrightarrow \theta = 0\textrm{ and }x=1\Leftrightarrow \theta =\frac{\pi}{3}\textrm{ }\dots \\ & = \int_{0}^{\frac{\pi}{3}}\bigg(\frac{\tan\theta}{\sqrt{3}}\bigg)^3\sqrt{1+\tan^2\theta}\,\bigg(\frac{1}{\sqrt{3}}\sec^2\theta\,\mathrm{d}\theta\bigg) \\ & = \frac{1}{9}\int_{0}^{\frac{\pi}{3}}\sec^3\theta\tan^3\theta\,\mathrm{d}\theta \\ \dots & \textrm{ but }\frac{\mathrm{d}(\sec^3\theta )}{\mathrm{d}\theta}=3\sec^2\theta\cdot\sec\theta\tan\theta\textrm{ so }\dots \\ & = \frac{1}{27}\int_{0}^{\frac{\pi}{3}}\tan^2\theta\,\mathrm{d}(\sec^3\theta )\\ \end{aligned}

Whoops! Read and follow the instructions.

\begin{aligned} & \quad\enspace \int_{0}^{1}x^3\sqrt{1+3x^2}\,\mathrm{d}x \\ \dots &\textrm{ let }u=1+3x^2\textrm{ then }\mathrm{d}x=\frac{\mathrm{d}u}{6x}\textrm{ }\dots \\ \dots &\textrm{ then }x=0\Leftrightarrow u=1\textrm{ and }x=1\Leftrightarrow u=4\textrm{ }\dots \\ & = \int_{1}^{4}x^3\sqrt{u}\,\bigg(\frac{\mathrm{d}u}{6x}\bigg) \\ & = \frac{1}{6}\int_{1}^{4}\bigg(\frac{u-1}{3}\bigg)\sqrt{u}\,\mathrm{d}u \\ & = \frac{1}{18}\int_{1}^{4}\big( u^{\frac{3}{2}}-u^{\frac{1}{2}}\big)\,\mathrm{d}u \\ & = \frac{1}{18}\bigg[ \frac{2u^{\frac{5}{2}}}{5}-\frac{2u^{\frac{3}{2}}}{3}\bigg]\bigg|_{1}^{4} \\ & = \cdots \\ \end{aligned}

This problem is not to be attempted.

Last Webpage Refresh Time:

January 30, 2026 2:33 pm

物理後生﹑掣數學之肘.
小子算數﹑指物理之月.

Recent Posts

  • 202507031737 心相續流
  • 202505101654 學而
  • 202412100018 Cognates
  • 202409051606 Pastime Exercise 012
  • 202408221017 Exercise 5.68

Navigation Menu

  • Astrophysics *
  • Continuum Mechanics *
    • Goldstein’s Classical Mechanics
    • Kinematics Graphs and Dynamics Figures (Only Kidding)
    • Work, Energy, and Power (Only Kidding)
    • Projectile Motion (Only Kidding)
  • Quantum Mechanics *
    • Menu of Quantum Mechanics
    • Trial and Error
  • Statistical Mechanics *
  • Electrodynamics *
    • D. J. Griffiths’s Introduction to Electrodynamics
    • Electrostatics (Only Kidding)
    • Electrostatics Diagrams (Only Kidding)
    • Electric Circuits (Only Kidding)
    • Electric Circuit Diagrams (Only Kidding)
  • General Relativity *
    • Foster and Nightingale’s A Short Course in General Relativity (3e)
    • Martin’s General Relativity: A First Course For Physicists
    • Moore’s A General Relativity Workbook
  • Thermodynamics *
  • Experimental Physics
    • Instrumental Laboratories
  • Public Examinations in Mathematics
    • Additional Mathematics – Hong Kong Certificate of Education (HKCE)
    • Applied Mathematics – Hong Kong Advanced Level (HKAL)
    • Mathematics Compulsory and Extended – Hong Kong Diploma of Secondary Education (HKDSE)
    • Mathematics High Level (HL) – International Baccalaureate (IB)
  • Public Examinations in Physics
    • Hong Kong Advanced Level Examination (HKALE)
    • Hong Kong Diploma of Secondary Education Examination (HKDSEE)
    • Hong Kong Certificate of Education Examination (HKCEE)
    • Hong Kong Higher Level Examination (HKHLE)
    • International Baccalaureate Higher Level Examination (IBHLE)
  • The Physics Computer
    • C programming
    • Lisp programming
    • Python programming
    • SQL Tables
  • The Physics Language
    • Abstract Algebra
    • Algebraic Geometry
    • Calculus
    • Complex Analysis
    • Differential Equations
    • Differential Geometry
    • Finite Mathematics
    • Linear Algebra
    • Mathematical Proofs
    • Miscellaneous
    • Multivariate Calculus
    • Numerical Analysis
    • Real Analysis
    • Topology
    • Typesetting Exercises
  • Scientific Literacy
    • Reading Comprehension
  • The Physics Design
    • Autodesk Maya | Blender
    • AxGlyph | The Geometer’s Sketchpad
    • Inkscape | LaTeX Tikz
    • Microsoft Paint | LibreOffice Draw
  • Uncategorized
    • If I could only sing
    • How I wish to draw
    • What I worth the read
  • Staging Zone
    • Dot grammar one
December 2022
M T W T F S S
 1234
567891011
12131415161718
19202122232425
262728293031  
« Nov   Jan »
Proudly powered by WordPress