Skip to content

Physicspupil

物理子衿

Day: November 21, 2022

Posted on November 21, 2022November 21, 2022

202211211714 Solution to 1976-CE-AMATH-I-XX

Express in polar form the following complex numbers:

z=-\sqrt{3}-\mathrm{i} and w=1-\mathrm{i}.

Hence or otherwise express \displaystyle{\frac{z^3}{w^4}} in the form of a+\mathrm{i}b.


Roughwork.

\begin{aligned} \mathrm{mod}(z) & = |z| \\ & = |-\sqrt{3}-\mathrm{i}|\\ & = \sqrt{(-\sqrt{3})^2+(-1)^2} \\ & = 2 \\ \mathrm{arg}(z) & = \arctan\bigg(\frac{-1}{-\sqrt{3}}\bigg) \\ & = \frac{4\pi}{3} \\ \mathrm{mod}(w) & = |w| \\ & = |1-\mathrm{i}| \\ & = \sqrt{(1)^2+(-1)^2} \\ & = \sqrt{2} \\ \mathrm{arg}(w) & = \arctan\bigg(\frac{-1}{1}\bigg) \\ & = \frac{3\pi}{4} \\ \end{aligned}

\begin{cases} z=2e^{\mathrm{i}\frac{4\pi}{3}} \\ w=\sqrt{2}e^{\mathrm{i}\frac{3\pi}{4}} \\ \end{cases}

\begin{aligned} \frac{z^3}{w^4} & = z^3w^{-4} \\ & = \big( 2e^{\mathrm{i}\frac{4\pi}{3}}\big)^3\big(\sqrt{2}e^{\mathrm{i}\frac{3\pi}{4}}\big)^{-4} \\ & = \dots \\ \end{aligned}

This problem is not to be attempted.

Posted on November 21, 2022November 21, 2022

202211211635 Solution to 1976-CE-AMATH-I-XX

Let the complex number z_1=-1+\mathrm{i}\sqrt{3}.

i. Represent z_1 and its conjugate \overline{z_1} on the Argand diagram.
ii. Calculate the modulus and the argument of z_1.
iii. If z_2=(z_1)^2, express z_2 in the form of a+\mathrm{i}b.
iv. Show that both z_1 and \displaystyle{\frac{1}{2}z_2} are roots of the equation z^3-8=0.


Roughwork.

\begin{aligned} \textrm{modulus }\mathrm{mod}(z_1) & = |z_1| \\ & = |-1+\mathrm{i}\sqrt{3}| \\ & = \sqrt{(-1)^2+(\sqrt{3})^2} \\ & = 2 \\ \textrm{argument }\mathrm{arg}(z_1) & = \arctan\bigg(\frac{\sqrt{3}}{-1}\bigg) \\ & = \frac{2\pi}{3}\\ \end{aligned}

Thus, z_1=2e^{\mathrm{i}\frac{2\pi}{3}}.

As is given,

\begin{aligned} z_2 & = (z_1)^2 \\ & = \big( 2e^{\mathrm{i}\frac{2\pi}{3}}\big)^2 \\ & = 4e^{\mathrm{i}\frac{4\pi}{3}} \\ \mathrm{mod}(z_2) & = 4 \\ \mathrm{arg}(z_2) & = \frac{4\pi}{3} \\ \end{aligned}

or,

\begin{aligned} z_2 & = (z_1)^2 \\ & = (-1+\mathrm{i}\sqrt{3})^2 \\ & = (-1)^2 +2(-1)(\mathrm{i}\sqrt{3}) + (\mathrm{i}\sqrt{3})^2 \\ & = 1 -\mathrm{i}(2\sqrt{3}) -3 \\ & = -2-\mathrm{i}(2\sqrt{3}) \\ \end{aligned}

This problem is not to be attempted.

Last Webpage Refresh Time:

January 31, 2026 5:06 am

物理後生﹑掣數學之肘.
小子算數﹑指物理之月.

Recent Posts

  • 202507031737 心相續流
  • 202505101654 學而
  • 202412100018 Cognates
  • 202409051606 Pastime Exercise 012
  • 202408221017 Exercise 5.68

Navigation Menu

  • Astrophysics *
  • Continuum Mechanics *
    • Goldstein’s Classical Mechanics
    • Kinematics Graphs and Dynamics Figures (Only Kidding)
    • Work, Energy, and Power (Only Kidding)
    • Projectile Motion (Only Kidding)
  • Quantum Mechanics *
    • Menu of Quantum Mechanics
    • Trial and Error
  • Statistical Mechanics *
  • Electrodynamics *
    • D. J. Griffiths’s Introduction to Electrodynamics
    • Electrostatics (Only Kidding)
    • Electrostatics Diagrams (Only Kidding)
    • Electric Circuits (Only Kidding)
    • Electric Circuit Diagrams (Only Kidding)
  • General Relativity *
    • Foster and Nightingale’s A Short Course in General Relativity (3e)
    • Martin’s General Relativity: A First Course For Physicists
    • Moore’s A General Relativity Workbook
  • Thermodynamics *
  • Experimental Physics
    • Instrumental Laboratories
  • Public Examinations in Mathematics
    • Additional Mathematics – Hong Kong Certificate of Education (HKCE)
    • Applied Mathematics – Hong Kong Advanced Level (HKAL)
    • Mathematics Compulsory and Extended – Hong Kong Diploma of Secondary Education (HKDSE)
    • Mathematics High Level (HL) – International Baccalaureate (IB)
  • Public Examinations in Physics
    • Hong Kong Advanced Level Examination (HKALE)
    • Hong Kong Diploma of Secondary Education Examination (HKDSEE)
    • Hong Kong Certificate of Education Examination (HKCEE)
    • Hong Kong Higher Level Examination (HKHLE)
    • International Baccalaureate Higher Level Examination (IBHLE)
  • The Physics Computer
    • C programming
    • Lisp programming
    • Python programming
    • SQL Tables
  • The Physics Language
    • Abstract Algebra
    • Algebraic Geometry
    • Calculus
    • Complex Analysis
    • Differential Equations
    • Differential Geometry
    • Finite Mathematics
    • Linear Algebra
    • Mathematical Proofs
    • Miscellaneous
    • Multivariate Calculus
    • Numerical Analysis
    • Real Analysis
    • Topology
    • Typesetting Exercises
  • Scientific Literacy
    • Reading Comprehension
  • The Physics Design
    • Autodesk Maya | Blender
    • AxGlyph | The Geometer’s Sketchpad
    • Inkscape | LaTeX Tikz
    • Microsoft Paint | LibreOffice Draw
  • Uncategorized
    • If I could only sing
    • How I wish to draw
    • What I worth the read
  • Staging Zone
    • Dot grammar one
November 2022
M T W T F S S
 123456
78910111213
14151617181920
21222324252627
282930  
« Oct   Dec »
Proudly powered by WordPress