202211041452 Solution to 1972-CE-AMATH-I-10

A point P moves such that its distance from the point (1,5) is equal to its distance from the line y=x. Write down and simplify the equation of the locus of P.


Roughwork.

Let the locus of P be t-parametrized as (x_P(t),y_P(t))=(t,f(t)), and let the line L:y=x be s-parametrized as (x_L(s),y_L(s))=(s,s).

For the shortest line joining any point P on the locus to its perpendicular projection on L, its slope is:

\textrm{Slope}_\alpha = \displaystyle{\frac{-1}{y_L'(s)} = \frac{-1}{1} = -1}

with angle of inclination \displaystyle{\alpha =\frac{3\pi}{4}}, and for the line joining any point P on the locus to point (1,5), its slope is

\textrm{Slope}_\beta =\displaystyle{\frac{y_P(t_0)-5}{x_P(t_0)-1}},

with angle of inclination \displaystyle{\beta =\tan^{-1}\bigg(\frac{y_P-5}{x_P-1}\bigg)}, whereas the slope of tangent at any point (x_P(t_0),y_P(t_0)) on the locus is

\textrm{Slope}_\gamma =f'(t_0)=\displaystyle{\frac{\mathrm{d}f(t)}{\mathrm{d}t}\bigg|_{t=t_0}}.

with angle of inclination \gamma =\tan^{-1}(f'(t_0)).

Have a picture in mind

Recall

\displaystyle{\tan (A\pm B)=\frac{\tan A\pm\tan B}{1\mp\tan A\tan B}}.

Hence,

\begin{aligned} \tan (\gamma -\alpha ) & = \tan (\gamma -\beta ) \\ \frac{\tan\gamma -\tan\alpha}{1+\tan\gamma\tan\alpha} & = \frac{\tan\gamma -\tan\beta}{1+\tan\gamma\tan\beta} \\ \frac{(f'(t_0))-(-1)}{1+(f'(t_0))(-1)} & = \frac{(f'(t_0))-\bigg(\displaystyle{\frac{y(t_0)-5}{x(t_0)-1}}\bigg)}{1+(f'(t_0))\bigg(\displaystyle{\frac{y(t_0)-5}{x(t_0)-1}}\bigg)} \\ \end{aligned}

The remaining are left the reader as an exercise.

202211041009 Solution to 2005-CE-AMATH-II-10

(a) Show that

\displaystyle{\frac{\mathrm{d}}{\mathrm{d}x}[x(x+1)^n]=(x+1)^{n-1}[(n+1)x+1]},

where n is a rational number.
(b) The slope at any point (x,y) of a curve C is given by

\displaystyle{\frac{\mathrm{d}y}{\mathrm{d}x}=(x+1)^{2004}(2006x+1)}.

If C passes through the point (-1,1), find the equation of C.


Roughwork.

(a)

Beginning by integration on the right hand side,

\begin{aligned} &\quad\, \int (x+1)^{n-1}[(n+1)x+1]\,\mathrm{d}x \\ & = \int (x+1)^{n-1}[(n+1)(x+1)-n]\,\mathrm{d}x \\ & = (n+1)\int (x+1)^n\,\mathrm{d}x - n\int (x+1)^{n-1}\,\mathrm{d}x \\ & = (n+1)\frac{(x+1)^{n+1}}{n+1} - n\frac{(x+1)^{(n-1)+1}}{(n-1)+1} + C \\ & = (x+1)^{n+1}-(x+1)^n + C \\ & = (x+1)^n(x+1) - (x+1)^n + C \\ & = x(x+1)^n + C \textrm{ for some constant}\\ \end{aligned}

or by differentiation on the left hand side,

\begin{aligned} &\quad\,\frac{\mathrm{d}}{\mathrm{d}x}[x(x+1)^n] \\ & = x\cdot \frac{\mathrm{d}}{\mathrm{d}x}\big( (x+1)^n\big) + \frac{\mathrm{d}}{\mathrm{d}x} (x)\cdot (x+1)^n \\ & = x\cdot (n)(x+1)^{n-1}(1) + 1\cdot (x+1)^n \\ & = (nx)(x+1)^{n-1}+(x+1)(x+1)^{n-1} \\ & = (x+1)^{n-1}[(n+1)x+1] \\ \end{aligned}

(b)

\begin{aligned} y & = \int \frac{\mathrm{d}y}{\mathrm{d}x}\,\mathrm{d}x \\ & = \int (x+1)^{(2005)-1}[( (2005)+1)x+1] \\ y(x) & \stackrel{\textrm{(a)}}{=} x(x+1)^{2005}+C\textrm{ for some constant} \\ \end{aligned}

Substituting -1 for x and 1 for y(x),

\begin{aligned} 1 & = (-1)((-1)+1)^{2005} + C \\ C & = 1 \\ \end{aligned}

In conclusion, the equation of C is

y=x(x+1)^{2005}+1.