202210280936 Problem 1.24

Expand f(t)=\sin^2t\cos^3t in Fourier series.

Extracted from Hwei Piao Hsu. (1984). HBJ College Outline of Applied Fourier Analysis.


Roughwork.

One can make use of the identities below:

\begin{aligned} e^{\pm\mathrm{i}n\theta} & = \cos n\theta\pm\mathrm{i}\sin n\theta \\ \cos n\theta & = \frac{e^{\mathrm{i}n\theta}+e^{-\mathrm{i}n\theta}}{2} \\ \sin n\theta & = \frac{e^{\mathrm{i}n\theta}-e^{-\mathrm{i}n\theta}}{2\mathrm{i}} \\ \end{aligned}

and thus

\begin{aligned} & \begin{cases} \sin^2t = \displaystyle{\bigg(\frac{e^{\mathrm{i}t}-e^{-\mathrm{i}t}}{2\mathrm{i}}\bigg)^2 }\\ \cos^3t = \displaystyle{ \bigg(\frac{e^{\mathrm{i}t}+e^{-\mathrm{i}t}}{2}\bigg)^3 }\\ \end{cases} \\ \Longrightarrow & \begin{cases} \sin^2t = \displaystyle{\frac{e^{2\mathrm{i}t}-2e^{\mathrm{i}t}e^{-\mathrm{i}t}+e^{-2\mathrm{i}t}}{-4}} \\ \cos^3t = \displaystyle{\frac{e^{3\mathrm{i}t}+3e^{\mathrm{i}t}+3e^{-\mathrm{i}t}+e^{-3\mathrm{i}t}}{8}} \\ \end{cases} \\ \end{aligned}

Or one can make use of the identity

\sin^2\theta + \cos^2\theta = 1.

and hence

\begin{aligned} f(t) & = (1-\cos^2t)\cos^3t \\ & = \cos^3t-\cos^5t \\ \end{aligned}

where \cos^5t is as expanded

\begin{aligned} \cos^5t & = \bigg(\frac{e^{\mathrm{i}t}+e^{-\mathrm{i}t}}{2}\bigg)^5 \\ & = \frac{e^{5\mathrm{i}t}+5e^{3\mathrm{i}t} +10e^{\mathrm{i}t} +10e^{-\mathrm{i}t}+5e^{-3\mathrm{i}t}+ e^{-5\mathrm{i}t}}{32}\\ \end{aligned}

so that

\begin{aligned} f(t) & = -\frac{e^{5\mathrm{i}t}}{32}+\bigg(\frac{1}{8}-\frac{5}{32}\bigg)e^{3\mathrm{i}t} + \bigg(\frac{3}{8}-\frac{10}{32}\bigg) e^{\mathrm{i}t} \\ & \qquad + \bigg(\frac{3}{8}-\frac{10}{32}\bigg) e^{-\mathrm{i}t} + \bigg(\frac{1}{8}-\frac{5}{32}\bigg) e^{-3\mathrm{i}t} - \frac{e^{-5\mathrm{i}t}}{32}\\ & = -\frac{e^{5\mathrm{i}t}}{32}-\frac{e^{3\mathrm{i}t}}{32} + \frac{e^{\mathrm{i}t}}{16} + \frac{e^{-\mathrm{i}t}}{16} - \frac{e^{-3\mathrm{i}t}}{32} -\frac{e^{-5\mathrm{i}t}}{32} \\ & = \frac{1}{16}\Bigg( 2\bigg(\frac{e^{\mathrm{i}t}+e^{-\mathrm{i}t}}{2}\bigg) - \frac{e^{3\mathrm{i}t}+e^{-3\mathrm{i}t}}{2} - \frac{e^{5\mathrm{i}t}+e^{-5\mathrm{i}t}}{2} \Bigg)\\ & = \cdots \\ \end{aligned}

Answer. \displaystyle{\frac{1}{16}(2\cos t-\cos 3t-\cos 5t)}.


No slightest disrespect to de Moivre’s and Euler’s formulae but in due respect of Fourier’s analysis, this problem had need be treated again.


Background.

A function f(t) satisfying f(t+T)=f(t) is called a periodic function, and the smallest T its period. A periodic function f(t) can be represented by the trigonometric Fourier series

\displaystyle{f(t)=\frac{1}{2}a_0+\sum_{n=1}^{\infty}(a_n\cos n\omega_0t+b_n\sin n\omega_0t)}

or

\displaystyle{f(t)=C_0+\sum_{n=1}^{\infty}C_n\cos (n\omega_0t-\theta_n)}

where \omega_0=2\pi /T. The coefficients of the Fourier series are found by using the orthogonality properties of sine and cosine functions over a period:

\begin{aligned} \begin{Bmatrix} a_n \\ b_n \end{Bmatrix} & = \frac{2}{T}\int_{-T/2}^{T/2}f(t)\begin{Bmatrix}\cos n\omega_0t \\ \sin n\omega_0t \end{Bmatrix}\,\mathrm{d}t \\ C_0 & = \frac{1}{2}a_0 \\ C_n & = \sqrt{a_n^2+b_n^2} \\ \theta_n & = \tan^{-1}\bigg(\frac{b_n}{a_n}\bigg) \\ \end{aligned}

Text on pg. 11


For f(t)=\sin^2t\cos^3t,

\begin{aligned} T & = 2\pi \\ \omega_0 & = 1 \\ \begin{Bmatrix} a_n \\ b_n \end{Bmatrix} & = \frac{1}{\pi}\int_{-\pi}^{\pi}\sin^2t\cos^3t\begin{Bmatrix}\cos nt \\ \sin nt\end{Bmatrix}\,\mathrm{d}t\\ \end{aligned}

When n=0:

\begin{aligned} a_0 & = \frac{1}{\pi}\int_{-\pi}^{\pi}\sin^2t\cos^3t\,\mathrm{d}t \\ \cdots\enspace\textrm{Let }& u=\sin t\textrm{ s.t. }\mathrm{d}t=\frac{\mathrm{d}u}{\cos t}\enspace\cdots \\ & = \frac{1}{\pi}\int_{t=-\pi}^{t=\pi}u^2\cos^2t\,\mathrm{d}u \\ & = \frac{1}{\pi}\int_{t=-\pi}^{t=\pi}u^2(1-u^2)\,\mathrm{d}u \\ & = \frac{1}{\pi}\int_{t=-\pi}^{t=\pi}(u^2-u^4)\,\mathrm{d}u \\ & = \frac{1}{\pi}\bigg[ \frac{u^3}{3}-\frac{u^5}{5} \bigg]\bigg|_{t=-\pi}^{t=\pi} \\ & = \frac{1}{\pi}\bigg[ \frac{\sin^3t}{3}-\frac{\sin^5t}{5} \bigg]\bigg|_{t=-\pi}^{t=\pi} \\ & = 0 \\ \end{aligned}

When n=1:

\begin{aligned} a_1 & = \frac{1}{\pi}\int_{-\pi}^{\pi}\sin^2t\cos^4t\,\mathrm{d}t \\ \dots\enspace &\textrm{By WolframAlpha}\enspace\dots \\ & = \frac{1}{\pi}\bigg[\frac{1}{192}(12t+3\sin (2t)-3\sin (4t)-\sin (6t))\bigg]\bigg|_{-\pi}^{\pi} \\ & = \frac{1}{\pi}\bigg(\frac{24\pi}{192}\bigg) \\ & = \frac{1}{8} \\ \end{aligned}

a bit tiring an exercise.

(to be continued)

202210261208 Dynamics Figures (Elementary) Q8

215. A cylindrical tube with a radius r is connected by means of spokes to two hoops with a radius R. The mass of both the hoops is M. The mass of the tube and the spokes in comparison with the mass M can be neglected. A string passed over a weightless pulley is wound around the tube. A weight with a mass m is attached to the end of the string.

Find the acceleration a=|\mathbf{a}| of the weight, the tension T=|\mathbf{T}| of the string and the force of friction f=|\mathbf{f}| acting between the hoops and the surface. (Assume that the hoops do not slip.) Also determine k the coefficient of friction at which the hoops will slip.

Extracted from B. Bukhovtsev et al. (1978). Problems In Elementary Physics.


Setup.

The kinetic energy T of the dumbbell M is in two parts, translational (/linear) and rotational (/angular), i.e.,

\begin{aligned} \textrm{KE}_{\textrm{translational}} & = \frac{1}{2}Mv_M^2 \\ \textrm{KE}_{\textrm{rotational}} & = \frac{1}{2}I\omega^2 \\ \end{aligned}

where the velocity of its centre of gravity (CG) is v_M, and its moment of inertia for discs I=MR^2. It has no potential energy V of its position h=0.

The kinetic energy T of the weight m is given by \textrm{KE}=\frac{1}{2}mv_m^2, and its potential energy V by \textrm{PE}=mgh.

The Lagrangian \mathcal{L} of a system is obtained from

\mathcal{L}=T-V,

whereby the Euler–Lagrange equation is given as

\displaystyle{\frac{\mathrm{d}}{\mathrm{d}t}\bigg(\frac{\partial\mathcal{L}}{\partial \dot{x}}\bigg)-\frac{\partial\mathcal{L}}{\partial x}=0}

Note the relationship between r, R, v_M, v_m, and \omega, i.e.,

\begin{aligned} v_m & = r\omega \\ v_M & = R\omega \\ \end{aligned}

Also beware that forces F of any kinds, e.g., weight \mathbf{W}=m\mathbf{g}, tension \mathbf{T}, normal reaction \mathbf{N}, and friction \mathbf{f}, have not been taken into consideration.


(to be continued)

202210251204 Dynamics Figures (Elementary) Q7

126. Two carts are pushed apart by an explosion of a powder charge Q placed between them. The cart weighing 100\,\mathrm{kg} travels a distance of 18 metres and stops. What distance will be covered by the other cart weighing 300\,\mathrm{kg}? The coefficients of friction k between the ground and the carts are the same.

Modified from B. Bukhovtsev et al. (1978). Problems In Elementary Physics.


First, have a picture in mind:

Applying the law of conservation of linear momentum at the instant of impact,

\begin{aligned} m_A\mathbf{u}_A+m_B\mathbf{u}_B & = (m_A+m_B)\mathbf{0} \\ -100u_A+300u_B & = 0 \\ u_A & = 3u_B \\ \end{aligned}

and the law of conservation of mechanical energy after then,

\begin{aligned} \textrm{KE}_A & = W_{f_A} \\ \frac{1}{2}m_Au_A^2 & = km_Ags_A \\ u_A & = 6\sqrt{kg} \\ u_B & = 2\sqrt{kg} \\ \cdots\cdots\cdots\cdots\enspace & \enspace\cdots\cdots\cdots\cdots \\ \textrm{KE}_B & = W_{f_B} \\ \frac{1}{2}m_Bu_B^2 & = km_Bgs_B \\ \frac{1}{2}(300)(2\sqrt{kg})^2 & = k(300)gs_B \\ s_B & = 2\\ \end{aligned}

\therefore The other cart will travel a distance of 2\,\mathrm{m}.

202210201704 Solution to 1971-CE-AMATH-II-XX

A particle is projected vertically from the ground so that its velocity (in \mathrm{ft/sec}) in the first 4 seconds is given by

V_1=128-32t\qquad (0\leqslant t\leqslant 4)

and after the fourth second by

V_2=3t^2-32t+80\qquad (4\leqslant t)

where t is the time (in seconds) after projection.

i. Show that V_1=V_2 when t=4.
ii. Calculate the height of the particle when t=4.
iii. Calculate the height of the particle when t=5.
iv. Find the value of t when the acceleration of the particle is 40\,\mathrm{ft/sec^2}.


Roughwork.

i.

When t=4:

\begin{aligned} V_1 & = 128-32(4) \\ & = 0 \\ V_2 & = 3(4)^2-32(4)+80 \\ & = 0 \\ V_1 & = V_2 \\ \end{aligned}

ii.

\begin{aligned} h(t\in [0,4]) & = \int_{0}^{4}V_1\,\mathrm{d}t \\ & = \int_{0}^{4}(128-32t)\,\mathrm{d}t \\ & = \bigg[ 128\bigg(\frac{t^{(0)+1}}{(0)+1}\bigg) - 32\bigg(\frac{t^{(1)+1}}{(1)+1}\bigg)\bigg]\bigg|_{0}^{4} \\ & = [128(4)-16(4)^2]-[128(0)-16(0)^2] \\ & = 256\,\mathrm{ft} \\ \end{aligned}

iii.

\begin{aligned} h(t\in [0,5]) & = h(t\in[0,4]) + h(t\in[4,5]) \\ & = 256\,\mathrm{ft} + \int_{4}^{5}V_2\,\mathrm{d}t \\ & = 256\,\mathrm{ft} + \int_{4}^{5}(3t^2-32t+80)\,\mathrm{d}t \\ & = 256\,\mathrm{ft} + \big[ t^3-16t^2+80t\big]\big|_{4}^{5} \\ & = 256\,\mathrm{ft} -3\,\mathrm{ft} \\ & = 253\,\mathrm{ft} \\ \end{aligned}

iv.

\begin{aligned} a(t\in [0,4]) & = \frac{\mathrm{d}}{\mathrm{d}t}V_1=-32 \\ a(t\in [4,T]) & = \frac{\mathrm{d}}{\mathrm{d}t}V_2=6t-32 \\ \end{aligned}

\begin{aligned} 6t-32 & = 40 \\ t & = 12\,\mathrm{s}\\ \end{aligned}

202210201553 Solution to 1977-CE-AMATH-I-XX

In the figure below, the complex numbers z_0, z_1, z_2, z_3, and z_4 are represented in the Argand diagram by the vertices of a regular pentagon with centre at the origin O. If z_0=2, write z_2 in polar form and calculate the value of (z_2)^5.


Recall.

A complex number z in Cartesian form z=a+\mathrm{i}b can also be expressed in the polar form

z=re^{\mathrm{i}\varphi}=r(\cos\varphi +\mathrm{i}\sin\varphi )

where r=\sqrt{a^2+b^2} is called the modulus |z|, and \varphi the argument \textrm{arg}(z), of z.

Roughwork.

Observe that

|z_0|=|z_1|=|z_2|=|z_3|=|z_4|=2.

and

\displaystyle{\textrm{arg}(z_2)=2\pi\cdot\frac{2}{5}=\frac{4\pi}{5}}.

Hence

z_2=2e^{\mathrm{i}\frac{4\pi}{5}}.

The remaining are left the reader as an exercise.

202210201121 Solution to 1977-CE-AMATH-I-XX

Prove, by mathematical induction, that 23^n-1 is divisible by 11.


Roughwork.

Let proposition P(n) be that

P(n):\enspace 11|23^n-1.

First, note

\begin{aligned} & \quad\enspace P(1):\enspace 11|23^{1}-1 \\ & \Leftrightarrow P(1):\enspace 11|23-1 \\ & \Leftrightarrow P(1):\enspace 11|22 \\ & \Leftrightarrow P(1)\textrm{ is true} \\ \end{aligned}

that P(n) is true for n=1.

Next, assumed be to P(n) true.

\begin{aligned} &\quad\enspace P(n+1):\enspace 11|23^{(n+1)}-1 \\ & \Leftrightarrow P(n+1):\enspace 11|23^{n}\cdot 23-1 \\ & \Leftrightarrow P(n+1):\enspace 11|23^n-1+23^n\cdot 22\\ & \dots\textrm{ by assumption }11|23^n-1\textrm{ and for }11|22 \\ & \Leftrightarrow P(n+1)\textrm{ is true} \\ \end{aligned}

Thus, P(n) is true implies P(n+1) true.

From P(1)\textrm{ true}\,\vee\, P(n)\Longrightarrow P(n+1)\textrm{ true} follows P(n) the proposition is true for all positive integers n\geqslant 1. By the principle of mathematical induction proven is that 11 divides 23^n-1.