Skip to content

Physicspupil

物理子衿

Posted on July 6, 2022October 24, 2022 by

202207061152 Solution to 1971-CE-AMATH-I-XX

If k is an integer, simplify

\displaystyle{\cos\bigg[ \frac{1}{2}(4k+1)\pi +\theta \bigg]\tan\bigg[\frac{1}{2}(4k+3)\pi -\theta \bigg]}.


Roughwork.

First,

\begin{aligned} & \quad \cos\bigg[ \frac{1}{2}(4k+1)\pi +\theta \bigg]\tan\bigg[\frac{1}{2}(4k+3)\pi -\theta \bigg] \\ & = \cos\bigg( 2k\pi+\frac{\pi}{2}+\theta \bigg) \tan \bigg( 2k\pi+\frac{3\pi}{2}-\theta \bigg) \\ \dots\textrm{as } &\textrm{are}\cos (\angle ),\tan (\angle )\textrm{ shifted by full periods, \textit{i.e.}, }k\cdot 2\pi\,\dots \\ & = \cos\bigg(\frac{\pi}{2}+\theta\bigg) \tan \bigg(\frac{3\pi}{2}-\theta \bigg) \\ \end{aligned}

Second,

recall that

\begin{aligned} \textrm{(in radians)} & \quad\textrm{(in degrees)} \\ \pi & = 180^\circ \\ \frac{\pi}{2} & = 90^\circ \\ \frac{3\pi}{2} & = 270^\circ\textrm{ \scriptsize{OR} }-90^\circ = -\frac{\pi}{2}\\ \end{aligned}

Hence,

\begin{aligned} & \quad \cos\bigg(\frac{\pi}{2}+\theta\bigg) \tan \bigg(\frac{3\pi}{2}-\theta \bigg) \\ & = \cos\bigg(\frac{\pi}{2}+\theta\bigg) \tan \bigg(-\frac{\pi}{2}-\theta \bigg) \\ & = \cos\bigg(\frac{\pi}{2}+\theta\bigg) \tan \bigg[ -\bigg(\frac{\pi}{2}+\theta \bigg)\bigg] \\ \dots &\textrm{ as }\tan(-\theta )=-\tan\theta \enspace\dots \\ & = -\cos\bigg(\frac{\pi}{2}+\theta\bigg) \tan \bigg(\frac{\pi}{2}+\theta\bigg) \\ \end{aligned}.

Recall that

\begin{aligned} \because \enspace & \tan\theta = \frac{\sin\theta}{\cos\theta} \\ \therefore \enspace & \cos\theta\tan\theta = \sin\theta \\ \end{aligned}.

Hence,

\begin{aligned} &\quad -\cos\bigg( \frac{\pi}{2}+\theta\bigg)\tan\bigg( \frac{\pi}{2}+\theta\bigg) \\ & = -\sin\bigg( \frac{\pi}{2}+\theta\bigg) \\ \end{aligned}

Third,

recall that

\displaystyle{\sin \bigg(\theta\pm\frac{\pi}{2}\bigg)}=\pm\cos\theta.

so

\begin{aligned} &\quad -\sin \bigg( \frac{\pi}{2}+\theta\bigg) \\ & = -\cos\theta \\ \end{aligned}


Answer.

\displaystyle{\cos\bigg[ \frac{1}{2}(4k+1)\pi +\theta \bigg]\tan\bigg[\frac{1}{2}(4k+3)\pi -\theta \bigg]}=-\cos\theta.

CategoriesAdditional Mathematics - Hong Kong Certificate of Education (HKCE)

Post navigation

Previous PostPrevious 202207051339 Solution to 1974-CE-AMATH-I-XX
Next PostNext 202207071143 Exercise 18.1 (Q1)

Last Webpage Refresh Time:

February 4, 2026 2:26 pm

物理後生﹑掣數學之肘.
小子算數﹑指物理之月.

Recent Posts

  • 202507031737 心相續流
  • 202505101654 學而
  • 202412100018 Cognates
  • 202409051606 Pastime Exercise 012
  • 202408221017 Exercise 5.68

Navigation Menu

  • Astrophysics *
  • Continuum Mechanics *
    • Goldstein’s Classical Mechanics
    • Kinematics Graphs and Dynamics Figures (Only Kidding)
    • Work, Energy, and Power (Only Kidding)
    • Projectile Motion (Only Kidding)
  • Quantum Mechanics *
    • Menu of Quantum Mechanics
    • Trial and Error
  • Statistical Mechanics *
  • Electrodynamics *
    • D. J. Griffiths’s Introduction to Electrodynamics
    • Electrostatics (Only Kidding)
    • Electrostatics Diagrams (Only Kidding)
    • Electric Circuits (Only Kidding)
    • Electric Circuit Diagrams (Only Kidding)
  • General Relativity *
    • Foster and Nightingale’s A Short Course in General Relativity (3e)
    • Martin’s General Relativity: A First Course For Physicists
    • Moore’s A General Relativity Workbook
  • Thermodynamics *
  • Experimental Physics
    • Instrumental Laboratories
  • Public Examinations in Mathematics
    • Additional Mathematics – Hong Kong Certificate of Education (HKCE)
    • Applied Mathematics – Hong Kong Advanced Level (HKAL)
    • Mathematics Compulsory and Extended – Hong Kong Diploma of Secondary Education (HKDSE)
    • Mathematics High Level (HL) – International Baccalaureate (IB)
  • Public Examinations in Physics
    • Hong Kong Advanced Level Examination (HKALE)
    • Hong Kong Diploma of Secondary Education Examination (HKDSEE)
    • Hong Kong Certificate of Education Examination (HKCEE)
    • Hong Kong Higher Level Examination (HKHLE)
    • International Baccalaureate Higher Level Examination (IBHLE)
  • The Physics Computer
    • C programming
    • Lisp programming
    • Python programming
    • SQL Tables
  • The Physics Language
    • Abstract Algebra
    • Algebraic Geometry
    • Calculus
    • Complex Analysis
    • Differential Equations
    • Differential Geometry
    • Finite Mathematics
    • Linear Algebra
    • Mathematical Proofs
    • Miscellaneous
    • Multivariate Calculus
    • Numerical Analysis
    • Real Analysis
    • Topology
    • Typesetting Exercises
  • Scientific Literacy
    • Reading Comprehension
  • The Physics Design
    • Autodesk Maya | Blender
    • AxGlyph | The Geometer’s Sketchpad
    • Inkscape | LaTeX Tikz
    • Microsoft Paint | LibreOffice Draw
  • Uncategorized
    • If I could only sing
    • How I wish to draw
    • What I worth the read
  • Staging Zone
    • Dot grammar one
July 2022
M T W T F S S
 123
45678910
11121314151617
18192021222324
25262728293031
« Jun   Sep »
Proudly powered by WordPress