202205311653 Exercise 1W

When a=1, b=2, c=5, d=6, and m=0, give the value of

1. ad^2+5bc 2. a^2bc^2-3ad+a^4 3. mabc+3a^2b^2c^2 4. b^2cd-abc^2 5. a^4b^3c+bcd 6. ma^3+4cd-ad 7. \displaystyle{\frac{ab^2}{2}+5c} 8. \displaystyle{\frac{md}{3}+\frac{4cd}{b}} 9. \displaystyle{\frac{ac}{d}+a} 10. \displaystyle{\frac{a^2}{c}+3a^2b} 11. \displaystyle{\frac{ab^2}{a}-\frac{a^5d}{b}} 12. \displaystyle{\frac{c+d}{d}+\frac{d-c}{a}} 13. \displaystyle{\frac{d^2-a^2b^2}{a^2b^2}} 14. \displaystyle{\frac{mcd+3abc}{d^2-4b^2}} 15. \displaystyle{\frac{a^2d^2-9b^2}{abcd}}

J. R. Lux & R. S. Pieters. (1969). Exercises in Elementary Algebra


Solution.

1.

\begin{aligned} ad^2+5bc & = (1)(6)^2+5(2)(5) \\ & = 36 + 50 \\ & = 86 \\ \end{aligned}

2.

\begin{aligned} a^2bc^2-3ad+a^4 & = (1)^2(2)(5)^2-3(1)(6)+(1)^4 \\ & = 50-18+1 \\ & = 33 \\ \end{aligned}

3.

\begin{aligned} mabc+3a^2b^2c^2 & = (0)(1)(2)(5)+3(1)^2(2)^2(5)^2 \\ & = 0 + 3(4)(25) \\ & = 300 \\ \end{aligned}

4.

\begin{aligned} b^2cd-abc^2 & = (2)^2(5)(6)-(1)(2)(5)^2 \\ & = (4)(5)(6)-(2)(25) \\ & = 120-50 \\ & = 70 \\ \end{aligned}

5.

\begin{aligned} a^4b^3c+bcd & = (1)^4(2)^3(5)+(2)(5)(6) \\ & = 8(5) + 60 \\ & = 40 + 60 \\ & = 100 \\ \end{aligned}

6.

\begin{aligned} ma^3+4cd-ad & = (0)(1)^3+4(5)(6)-(1)(6) \\ & = 0 + 120 - 6 \\ & = 114 \\ \end{aligned}

7.

\begin{aligned} \frac{ab^2}{2} + 5c & = \frac{(1)(2)^2}{2}+5(5) \\ & = \frac{4}{2} + 25 \\ & = 2 + 25 \\ & = 27 \\ \end{aligned}

8.

\begin{aligned} \frac{md}{3}+\frac{4cd}{b} & = \frac{(0)(6)}{3}+\frac{4(5)(6)}{(2)} \\ & = 0 + \frac{120}{2} \\ & = 60 \\ \end{aligned}

9.

\begin{aligned} \frac{ac}{d}+a & = \frac{(1)(5)}{(6)} + (1) \\ & = \frac{5}{6} + 1 \\ & = 1\frac{5}{6} \\ \end{aligned}

10.

\begin{aligned} \frac{a^2}{c}+3a^2b & = \frac{(1)^2}{(5)}+3(1)^2(2) \\ & = \frac{1}{5}+6 \\ & = 6\frac{1}{5} \\ \end{aligned}

11.

\begin{aligned} \frac{ab^2}{a}-\frac{a^5d}{b} & = \frac{(1)(2)^2}{(1)}-\frac{(1)^5(6)}{(2)} \\ & = 4 - 3 \\ & = 1 \\ \end{aligned}

12.

\begin{aligned} \frac{c+d}{d}+\frac{d-c}{a} & = \frac{(5)+(6)}{(6)} + \frac{(6)-(5)}{(1)} \\ & = \frac{11}{6} + \frac{1}{1} \\ & = 1\frac{5}{6} + 1 \\ & = 2\frac{5}{6} \\ \end{aligned}

13.

\begin{aligned} \frac{d^2-a^2b^2}{a^2b^2} & = \frac{(6)^2-(1)^2(2)^2}{(1)^2(2)^2} \\ & = \frac{36-(1)(4)}{(1)(4)} \\ & = \frac{32}{4} \\ & = 8 \\ \end{aligned}

14.

\begin{aligned} \frac{mcd+3abc}{d^2-4b^2} & = \frac{(0)(5)(6)+3(1)(2)(5)}{(6)^2-4(2)^2} \\ & = \frac{0+30}{36-4(4)} \\ & = \frac{30}{36-16} \\ & = \frac{30}{20} \\ & = \frac{3}{2} \\ & = 1\frac{1}{2} \\ \end{aligned}

15.

\begin{aligned} \frac{a^2d^2-9b^2}{abcd} & = \frac{(1)^2(6)^2-9(2)^2}{(1)(2)(5)(6)} \\ & = \frac{(1)(36)-9(4)}{60} \\ & = \frac{36-36}{60} \\ & = \frac{0}{60} \\ & = 0 \\ \end{aligned}

202205311107 Problem 4.23

Boxes A and B are in contact on a horizontal, frictionless (i.e. f=0) surface, as shown in the Figure below. Box A has mass 20.0\,\mathrm{kg} and box B has mass 5.0\,\mathrm{kg}. A horizontal force of 100\,\mathrm{N} is exerted on box A. What is the magnitude of the force that box A exerts on box B?

extracted from Problem 4.23, Sears and Zemansky’s University Physics


Steps.

Draw the free-body diagrams of A, B, and A+B.

Apply Newton’s 2^\textrm{nd} law \textrm{Net }F=ma:

\begin{aligned} F_A- {}_{B}F_A - f_A & = m_Aa_A \\ {}_{A}F_B - f_B & = m_Ba_B \\ F_A-f_{A+B} & = m_{A+B}a_{A+B} \\ \end{aligned}

Conditioning the equations of motion:

\begin{aligned} a_A=a_B & =a_{A+B} \\ f_A=f_B=f_{A+B} & =0 \\ {}_{B}F_A & ={}_{A}F_{B} \\ m_A+m_B & =m_{A+B} \\ \end{aligned}

and substituting numbers for symbols, write:

\begin{aligned} 100 - {}_{A}F_{B} & = 20a \\ {}_{A}F_{B} & = 5a \\ 100 & =25a \\ \end{aligned}


\therefore The magnitude {}_{A}F_{B} of the force that box A exerts on box B is 20\,\mathrm{N}.

202205271015 Parametrization 001

equation y=mx+c describes a straight line with slope m and y-intercept c, as shown below:

With some scalar parameter t parametrize the equation, in vector representation of units \hat{\imath} and \hat{\jmath}, by

\mathbf{s}(t)=t\,\hat{\mathbf{i}} + (mt+c)\,\hat{\mathbf{j}}\quad\textrm{where } t\in (-\infty ,\infty)

whereas for a quadratic equation y=ax^2+bx+c which describes a parabolic curve, its parametric representation is

\mathbf{s}(t)=t\,\hat{\mathbf{i}} + (at^2+bt+c)\,\hat{\mathbf{j}}\quad\textrm{where } t\in (-\infty ,\infty)

and similarly for a circle of radius r centered at the origin O(0,0), its locus is parametrized as

\mathbf{s}(t)=r\cos t\,\hat{\mathbf{i}}+r\sin t\,\hat{\mathbf{j}}\quad\textrm{where } t\in [-2\pi ,2\pi ].

(to be continued)

202205261415 Arithmetic in Lisp

Given two operands a and b which are real numbers, define the operators,

a+b, a-b, a\times b, a\div b, a^{b}, \sqrt[b]{a}, a\bmod b,

with respect to arithmetic operations such as addition, subtraction, multiplication, division, exponentiation, rooting, and Modulo.

Not so accustomed to these, Lisp cannot interpret or compile them until we have defined those seven primitive functions, better known as symbolic computations; as were newborn infants taught human intelligence by grownup adults between homo sapiens.

To Lisp, arithmetic operations are usually \textrm{\scriptsize{NOT}} predefined. We have in our toolkit \textrm{\scriptsize{ONLY}} three mathematical functors, i.e., list, iteration, and recursion.

The roots of quadratic equation are given by the formula:

\displaystyle{x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}}

the expected outcome of which is calculated by parts, first the discriminant ‘delta’:

\Delta = b^2-4ac;

then the plus-minus ‘pm’:

\pm (x)=(+x,-x);

and hence

will solve for real roots, ignoring the complex though.

\therefore Predefining the seven primitive functions is in order for solving any computational problems by Lisp.

(to be continued)

202205251335 SQL Table 005

202205250911 Exercise 2.1A (Q1)

Exercises 1-8, show that the given function y=f(x) is one-to-one over the given interval, then find the formulae for the inverse function f^{-1} and its derivative.

1. f(x)=x\quad \forall\, x

2. f(x)=3x\quad \forall\, x
3. f(x)=x^2\quad \forall\, x\ge 0
4. f(x)=\sqrt{x}\quad \forall\, x\ge 0
5. f(x)=\displaystyle{\frac{1}{x}}\quad \forall\, x>0
6. f(x)=\displaystyle{\frac{1}{x}}\quad \forall\, x<0
7. f(x)=\displaystyle{\frac{1}{x^2}}\quad \forall\, x>0
8. f(x)=x^5\quad \forall\, x

Extracted from Michael Corral. (2020). Elementary Calculus.


Background. (one-to-one; inverse; derivative of an inverse)

A one-to-one function (aka injection/injective function) is a function f that maps distinct elements to distinct elements; i.e., f(x_1)=f(x_2)\Rightarrow x_1=x_2, or equivalently in the contrapositive that x_1\neq x_2\Rightarrow f(x_1)\neq f(x_2). Not to be confused with one-to-one correspondence that refers to bijection.

Wikipedia on Injective function

The inverse function of a function f (aka inverse of f) is a function that undoes the operation of f. The inverse of f exists if and only if f is bijective, and if it exists, is denoted by f^{-1}. For a function f:X\rightarrow Y, its inverse f^{-1}:Y\rightarrow X admits an explicit description: it sends each element y\in Y to the unique element x\in X such that f(x)=y.

Wikipedia on Inverse function

If y=f(x) is differentiable and has an inverse function x=f^{-1}(y), then f^{-1} is differentiable and its derivative is

\displaystyle{\frac{\mathrm{d}x}{\mathrm{d}y}=\frac{1}{\frac{\mathrm{d}y}{\mathrm{d}x}}}\quad\textrm{ if }\enspace\frac{\mathrm{d}y}{\mathrm{d}x}\neq 0.

Text on pg. 38, Sec. 2.1, Ch. 2


1.

f(x)=x\quad \forall\, x:

\begin{aligned} \forall\, x\in\mathbb{R},\quad & f(x_1)=x_1 \\ & f(x_2)=x_2 \\ \enspace & f(x_1)=f(x_2) \Rightarrow x_1=x_2 \\ \end{aligned}

\therefore y=f(x)=x is injective/one-to-one.

In order for an inverse f^{-1}(x) to exist, the original function f(x) must be bijective (et injective et surjective). It remains to check whether or not y=f(x)=x is surjective.

A function f:X\rightarrow Y is said to be surjective if \forall\, y\in Y,\enspace \exists\, x\in X\textrm{ s.t. }f(x)=y. In other words, every element of the function’s codomain is the image of at least one element of its domain.

Wikipedia on Surjective function

Assume f(x)=x is a real-valued function, i.e., f:\mathbb{R}\rightarrow\mathbb{R} given by x\mapsto x. Obviously f is surjective. Thus it is bijective enough to have an inverse f^{-1}:\mathbb{R}\rightarrow\mathbb{R}. And apparently f^{-1} is given by x\mapsto x, such that f^{-1}\circ f=f\circ f^{-1}=\textrm{id}_{\,\mathbb{R}}. Its derivative is \displaystyle{\frac{\mathrm{d}}{\mathrm{d}x}\big( f^{-1}(x)\big) =\frac{\mathrm{d}}{\mathrm{d}x}(x)=1}.


The remaining questions are left the reader.

202205231502 Exercise 1.3 A (Q1)

Exercises 1-9, let \mathrm{d}x be an infinitesimal and prove the given formula.

1. (\mathrm{d}x+1)^2=2\,\mathrm{d}x+1

Extracted from Michael Corral. (2020). Elementary Calculus.


Background. (Infinitesimal)

A number \delta is an infinitesimal if the conditions (a)(d) hold: (a) \delta\neq 0; (b) If \delta >0 then \delta is smaller than any positive real number; (c) If \delta <0 then \delta is larger than any negative real number; (d) \delta^2=0 (and hence all higher powers of \delta, such as \delta^3 and \delta^4, are also 0) N.b. Any infinitesimal multiplied by a nonzero real number is also an infinitesimal, while 0 times an infinitesimal is 0.


Proof.

Suppose the contrary is true:

(\mathrm{d}x+1)^2\neq 2\,\mathrm{d}x+1.

\begin{aligned} \textrm{LHS} & = (\mathrm{d}x+1)^2 \\ & = (\mathrm{d}x)^2+2(\mathrm{d}x)(1)+(1)^2 \\ & \stackrel{(\textrm{d})}{=} 0+2\,\mathrm{d}x+1 \\ & = 2\,\mathrm{d}x+1 \\ & = \textrm{RHS} \qquad \perp\\ \end{aligned}

Thus converse is the case.