202110121413 Exercise 8.5.B (Q21)

This exercise is related to Einstein’s famous law E=mc^2. The relativistic momentum p of a particle of mass m moving at a speed v along a straight line (say, the x-axis) is

\displaystyle{p=\frac{mv}{\sqrt{1-\frac{v^2}{c^2}}}},

where c is the speed of light. The relativistic force on the particle along that line is

\displaystyle{F=\frac{\mathrm{d}p}{\mathrm{d}t}},

which is the same formula as Newton’s Second Law of motion in classical mechanics. Assume that the particle starts at rest at position x_1 and ends at position x_2 along the x-axis. The work done by the force F on the particle is:

\displaystyle{W=\int_{x_1}^{x_2}F\,\mathrm{d}x=\int_{x_1}^{x_2}\frac{\mathrm{d}p}{\mathrm{d}t}\,\mathrm{d}x}

(a) Show that

\displaystyle{\frac{\mathrm{d}p}{\mathrm{d}v}=\frac{m}{\bigg( \displaystyle{1-\frac{v^2}{c^2}}\bigg)^{3/2}}}.

(b) Use the Chain Rule formula

\displaystyle{\frac{\mathrm{d}p}{\mathrm{d}t}=\frac{\mathrm{d}p}{\mathrm{d}v}\frac{\mathrm{d}v}{\mathrm{d}x}\frac{\mathrm{d}x}{\mathrm{d}t}}

to show that

\displaystyle{F\,\mathrm{d}x=v\frac{\mathrm{d}p}{\mathrm{d}v}\,\mathrm{d}v}.

(c) Use parts (a) and (b) to show that

\displaystyle{W=\int_{0}^{v}\frac{\mathrm{d}p}{\mathrm{d}v}\, v\,\mathrm{d}v=\int_{0}^{v}\frac{mv}{\bigg(\displaystyle{ 1-\frac{v^2}{c^2}}\bigg)^{3/2}}\,\mathrm{d}v}.

(d) Use part (c) to show that

\displaystyle{W=\frac{mc^2}{\sqrt{1-\frac{v^2}{c^2}}}-mc^2}.

(e) Define the relativistic kinetic energy K of the particle to be K=W, and define the total energy E to be

\displaystyle{E=\frac{mc^2}{\sqrt{1-\frac{v^2}{c^2}}}}.

So by part (d), K=E-mc^2. Show that

E^2=p^2c^2+(mc^2)^2.

(Hint: Expand the right side of that equation.)

(f) What is E when the particle is at rest?


Solution.

(a)

\begin{aligned} \frac{\mathrm{d}p}{\mathrm{d}v} & = \frac{\mathrm{d}}{\mathrm{d}v}\bigg( \frac{mv}{\sqrt{1-\frac{v^2}{c^2}}}\bigg) \\ & = \frac{\bigg(\sqrt{1-\displaystyle{\frac{v^2}{c^2}}}\bigg)(m)-(mv)\bigg(\displaystyle{\frac{1}{2}}\Big( 1-\displaystyle{\frac{v^2}{c^2}}\Big)^{-1/2}\Big( -\displaystyle{\frac{2v}{c^2}}\Big)\bigg)}{\bigg(\sqrt{1-\displaystyle{\frac{v^2}{c^2}}}\bigg)^2} \\ & = \frac{\bigg( 1-\displaystyle{\frac{v^2}{c^2}}\bigg) (m)-(mv)\bigg( \displaystyle{-\frac{v}{c^2}}\bigg)}{\bigg( 1-\displaystyle{\frac{v^2}{c^2}}\bigg)^{3/2}} \\ & = \frac{m}{\bigg( 1-\displaystyle{\frac{v^2}{c^2}}\bigg)^{3/2}} \end{aligned}

(b)

\begin{aligned} \int_{x_1}^{x_2}F\,\mathrm{d}x & = \int_{x_1}^{x_2}\frac{\mathrm{d}p}{\mathrm{d}t}\,\mathrm{d}x \\ \int_{x_1}^{x_2}F\,\mathrm{d}x & = \int_{x_1}^{x_2}\frac{\mathrm{d}p}{\mathrm{d}v}\frac{\mathrm{d}v}{\mathrm{d}x}\frac{\mathrm{d}x}{\mathrm{d}t}\,\mathrm{d}x \\ F\,\mathrm{d}x & = \frac{\mathrm{d}p}{\mathrm{d}v}\frac{\mathrm{d}v}{\mathrm{d}x}\frac{\mathrm{d}x}{\mathrm{d}t}\,\mathrm{d}x \\ & = v\,\frac{\mathrm{d}p}{\mathrm{d}v}\,\mathrm{d}v\\ \end{aligned}

(c)

\begin{aligned} W & =\int_{0}^{v}\frac{\mathrm{d}p}{\mathrm{d}v}\, v\,\mathrm{d}v \\ & = \int_{0}^{v}\Bigg( \frac{m}{\big( 1-\frac{v^2}{c^2}\big)^{3/2}}\Bigg) (v)\,\mathrm{d}v\\ & =\int_{0}^{v}\frac{mv}{\bigg(\displaystyle{ 1-\frac{v^2}{c^2}}\bigg)^{3/2}}\,\mathrm{d}v \\ \end{aligned}.

(d)

\begin{aligned} W & = \int_{0}^{v}\frac{mv}{\bigg(\displaystyle{1-\frac{v^2}{c^2}}\bigg)^{3/2}}\,\mathrm{d}v \\ \dots\enspace & \textrm{let }u=\frac{v}{c}\enspace\dots \\ \dots\enspace & \textrm{then }\mathrm{d}v=c\,\mathrm{d}u\enspace\dots \\ & = \int_{0}^{\frac{v}{c}}\frac{mc^2u}{(1-u^2)^{\frac{3}{2}}}\,\mathrm{d}u \\ \dots\enspace & \textrm{let }u=\sin\theta\enspace\dots \\ \dots\enspace & \textrm{then }\mathrm{d}u=\cos\theta\,\mathrm{d}\theta\enspace\dots \\ & = \int\frac{mc^2\sin\theta}{\cos^3\theta}\cdot\cos\theta\,\mathrm{d}\theta \\ & = \int\frac{mc^2\sin\theta}{\cos^2\theta}\,\mathrm{d}\theta \\ \dots\enspace & \textrm{let }w=\cos\theta\enspace\dots \\ \dots\enspace & \textrm{then }\mathrm{d}w=-\sin\theta\,\mathrm{d}\theta\enspace\dots \\ & \quad -\int \frac{mc^2}{w^2}\,\mathrm{d}w \\ & = \frac{mc^2}{w} \\ & = \frac{mc^2}{\cos\theta} \\ & = mc^2\sec\theta \\ & = \frac{mc^2}{\sqrt{1-u^2}} \\ & = \enspace\dots \\ & = \bigg[\frac{mc^2}{\sqrt{1-u^2}}\bigg]\bigg|^{\frac{v}{c}}_{0} \\ & = \frac{mc^2}{\sqrt{1-\displaystyle{\frac{v^2}{c^2}}}}-mc^2 \\ \end{aligned}

Parts (e) and (f) are left to the readers.

Leave a Reply

Your email address will not be published. Required fields are marked *