202110121413 Exercise 8.5.B (Q21)

This exercise is related to Einstein’s famous law E=mc^2. The relativistic momentum p of a particle of mass m moving at a speed v along a straight line (say, the x-axis) is

\displaystyle{p=\frac{mv}{\sqrt{1-\frac{v^2}{c^2}}}},

where c is the speed of light. The relativistic force on the particle along that line is

\displaystyle{F=\frac{\mathrm{d}p}{\mathrm{d}t}},

which is the same formula as Newton’s Second Law of motion in classical mechanics. Assume that the particle starts at rest at position x_1 and ends at position x_2 along the x-axis. The work done by the force F on the particle is:

\displaystyle{W=\int_{x_1}^{x_2}F\,\mathrm{d}x=\int_{x_1}^{x_2}\frac{\mathrm{d}p}{\mathrm{d}t}\,\mathrm{d}x}

(a) Show that

\displaystyle{\frac{\mathrm{d}p}{\mathrm{d}v}=\frac{m}{\bigg( \displaystyle{1-\frac{v^2}{c^2}}\bigg)^{3/2}}}.

(b) Use the Chain Rule formula

\displaystyle{\frac{\mathrm{d}p}{\mathrm{d}t}=\frac{\mathrm{d}p}{\mathrm{d}v}\frac{\mathrm{d}v}{\mathrm{d}x}\frac{\mathrm{d}x}{\mathrm{d}t}}

to show that

\displaystyle{F\,\mathrm{d}x=v\frac{\mathrm{d}p}{\mathrm{d}v}\,\mathrm{d}v}.

(c) Use parts (a) and (b) to show that

\displaystyle{W=\int_{0}^{v}\frac{\mathrm{d}p}{\mathrm{d}v}\, v\,\mathrm{d}v=\int_{0}^{v}\frac{mv}{\bigg(\displaystyle{ 1-\frac{v^2}{c^2}}\bigg)^{3/2}}\,\mathrm{d}v}.

(d) Use part (c) to show that

\displaystyle{W=\frac{mc^2}{\sqrt{1-\frac{v^2}{c^2}}}-mc^2}.

(e) Define the relativistic kinetic energy K of the particle to be K=W, and define the total energy E to be

\displaystyle{E=\frac{mc^2}{\sqrt{1-\frac{v^2}{c^2}}}}.

So by part (d), K=E-mc^2. Show that

E^2=p^2c^2+(mc^2)^2.

(Hint: Expand the right side of that equation.)

(f) What is E when the particle is at rest?


Solution.

(a)

\begin{aligned} \frac{\mathrm{d}p}{\mathrm{d}v} & = \frac{\mathrm{d}}{\mathrm{d}v}\bigg( \frac{mv}{\sqrt{1-\frac{v^2}{c^2}}}\bigg) \\ & = \frac{\bigg(\sqrt{1-\displaystyle{\frac{v^2}{c^2}}}\bigg)(m)-(mv)\bigg(\displaystyle{\frac{1}{2}}\Big( 1-\displaystyle{\frac{v^2}{c^2}}\Big)^{-1/2}\Big( -\displaystyle{\frac{2v}{c^2}}\Big)\bigg)}{\bigg(\sqrt{1-\displaystyle{\frac{v^2}{c^2}}}\bigg)^2} \\ & = \frac{\bigg( 1-\displaystyle{\frac{v^2}{c^2}}\bigg) (m)-(mv)\bigg( \displaystyle{-\frac{v}{c^2}}\bigg)}{\bigg( 1-\displaystyle{\frac{v^2}{c^2}}\bigg)^{3/2}} \\ & = \frac{m}{\bigg( 1-\displaystyle{\frac{v^2}{c^2}}\bigg)^{3/2}} \end{aligned}

(b)

\begin{aligned} \int_{x_1}^{x_2}F\,\mathrm{d}x & = \int_{x_1}^{x_2}\frac{\mathrm{d}p}{\mathrm{d}t}\,\mathrm{d}x \\ \int_{x_1}^{x_2}F\,\mathrm{d}x & = \int_{x_1}^{x_2}\frac{\mathrm{d}p}{\mathrm{d}v}\frac{\mathrm{d}v}{\mathrm{d}x}\frac{\mathrm{d}x}{\mathrm{d}t}\,\mathrm{d}x \\ F\,\mathrm{d}x & = \frac{\mathrm{d}p}{\mathrm{d}v}\frac{\mathrm{d}v}{\mathrm{d}x}\frac{\mathrm{d}x}{\mathrm{d}t}\,\mathrm{d}x \\ & = v\,\frac{\mathrm{d}p}{\mathrm{d}v}\,\mathrm{d}v\\ \end{aligned}

(c)

\begin{aligned} W & =\int_{0}^{v}\frac{\mathrm{d}p}{\mathrm{d}v}\, v\,\mathrm{d}v \\ & = \int_{0}^{v}\Bigg( \frac{m}{\big( 1-\frac{v^2}{c^2}\big)^{3/2}}\Bigg) (v)\,\mathrm{d}v\\ & =\int_{0}^{v}\frac{mv}{\bigg(\displaystyle{ 1-\frac{v^2}{c^2}}\bigg)^{3/2}}\,\mathrm{d}v \\ \end{aligned}.

(d)

\begin{aligned} W & = \int_{0}^{v}\frac{mv}{\bigg(\displaystyle{1-\frac{v^2}{c^2}}\bigg)^{3/2}}\,\mathrm{d}v \\ \dots\enspace & \textrm{let }u=\frac{v}{c}\enspace\dots \\ \dots\enspace & \textrm{then }\mathrm{d}v=c\,\mathrm{d}u\enspace\dots \\ & = \int_{0}^{\frac{v}{c}}\frac{mc^2u}{(1-u^2)^{\frac{3}{2}}}\,\mathrm{d}u \\ \dots\enspace & \textrm{let }u=\sin\theta\enspace\dots \\ \dots\enspace & \textrm{then }\mathrm{d}u=\cos\theta\,\mathrm{d}\theta\enspace\dots \\ & = \int\frac{mc^2\sin\theta}{\cos^3\theta}\cdot\cos\theta\,\mathrm{d}\theta \\ & = \int\frac{mc^2\sin\theta}{\cos^2\theta}\,\mathrm{d}\theta \\ \dots\enspace & \textrm{let }w=\cos\theta\enspace\dots \\ \dots\enspace & \textrm{then }\mathrm{d}w=-\sin\theta\,\mathrm{d}\theta\enspace\dots \\ & \quad -\int \frac{mc^2}{w^2}\,\mathrm{d}w \\ & = \frac{mc^2}{w} \\ & = \frac{mc^2}{\cos\theta} \\ & = mc^2\sec\theta \\ & = \frac{mc^2}{\sqrt{1-u^2}} \\ & = \enspace\dots \\ & = \bigg[\frac{mc^2}{\sqrt{1-u^2}}\bigg]\bigg|^{\frac{v}{c}}_{0} \\ & = \frac{mc^2}{\sqrt{1-\displaystyle{\frac{v^2}{c^2}}}}-mc^2 \\ \end{aligned}

Parts (e) and (f) are left to the readers.

202110121137 Exercise 1.1.1

(a) Show that x^2\in\langle x-y^2,xy\rangle in k[x,y] (k any field).

(b) Show that \langle x-y^2,xy,y^2\rangle = \langle x,y^2\rangle.

(c) Is \langle x-y^2,xy\rangle = \langle x^2,xy\rangle? Why or why not?


Definition.

Let f_1,\dots ,f_s\in k[x_1,\dots ,x_n]. We let \langle f_1,\dots ,f_s\rangle denote the collection \langle f_1,\dots ,f_s\rangle = \{ p_1f_1+\cdots +p_sf_s:p_i\in k[x_1,\dots ,x_n]\} for i= 1,\dots ,s.

(a)

\begin{aligned} x^2 & = (x)(x-y^2) + (y)(xy) \\ & \in \langle x-y^2,xy\rangle \\ \end{aligned}

(b)

First, we want to show

\langle x-y^2,xy,y^2\rangle \in \langle x,y^2\rangle.

For any p_1,p_2,p_3\in k[x,y],

\begin{aligned} & \quad \langle x-y^2,xy,y^2\rangle \\ & = (p_1)(x-y^2)+(p_2)(xy)+(p_3)(y^2) \\ & = p_1x-p_1y^2+p_2xy+p_3y^2 \\ & = (p_1+p_2y)(x)+(p_3-p_1)(y^2) \\ & \in \langle x,y^2\rangle \\ \end{aligned}

Next, we want to show

\langle x,y^2\rangle\in\langle x-y^2,xy,y^2\rangle.

For any p_1,p_2\in k[x,y],

\begin{aligned} &\quad \langle x,y^2\rangle \\ & = (p_1)(x)+(p_2)(y^2) \\ & = (p_1)(x-y^2)+(0)(xy)+(p_1+p_2)(y^2) \\ & \in \langle x-y^2,xy,y^2\rangle \\ \end{aligned}

All in all,

\langle x-y^2,xy,y^2\rangle = \langle x,y^2\rangle.

(c) I guess \textrm{\scriptsize{NOT}}.

202110120936 Exercises 13.3.6 (Q43)

Graph each function by algebraically determining its key features. Then state the domain and range of the function.

f(x)=x^2-7x+12


Solution.

\begin{aligned} f(x) & = x^2-7x+12 \\ & = (x-3)(x-4) \end{aligned}

We see that y=f(x)=0 when x=\{ 3,4\}.

i. \therefore The x-intercepts of f(x) are thus (3,0) and (4,0).

Plugging in x=0 will give the y-intercept:

\begin{aligned} y\textrm{-intercept}& = f(0) \\ & = (0)^2-7(0)+12 \\ & = 12 \end{aligned}

ii. \therefore The y-intercept is thus (0,12).

Differentiating y=f(x) with respect to x,

\begin{aligned} & \quad f'(x) \\ & = \frac{\mathrm{d}}{\mathrm{d}x}\big( f(x)\big) \\ & = \frac{\mathrm{d}}{\mathrm{d}x}(x^2-7x+12) \\ & = 2x-7 \\ \end{aligned}

When x=3.5 and f(3.5)=-0.25, the slope of f(x) is zero, i.e., f'(x)=0.

iii. \therefore (\frac{7}{2},-\frac{1}{4}) is a turning point (/extreme point/vertex).

\begin{aligned} y & =f(x) \\ & = x^2-7x+12 \\ & = x^2-7x+\bigg( \frac{7}{2}\bigg)^2 - \bigg( \frac{7}{2}\bigg)^2 + 12 \\ & = \bigg( x-\frac{7}{2}\bigg)^2 - \frac{1}{4}\\ \end{aligned}

iv. \therefore The axis of symmetry of the graph is x=\frac{7}{2}.

Differentiating y=f(x) twice with respect to x,

\begin{aligned} &\quad f''(x)\\ & = \frac{\mathrm{d}}{\mathrm{d}x}\big( f'(x)\big) \\ & = \frac{\mathrm{d}}{\mathrm{d}x}(2x-7) \\ & = 2 \quad (>0)\\ \end{aligned}

We see that the slope is increasing with x.

v. \therefore The graph of f(x) is concave upward (/convex downward).

vi. \therefore The domain is \mathbb{R} and the range \{ y\in\mathbb{R}:y\ge -\frac{1}{4}\}.