202110251056 Solution to 1970-CE-AMATH-1

Given that F(x)=(b-c)x^3-(a+2b-3c)x^2-(b+2c-3a)x-2(a-b). By using the remainder theorem, prove that (x-1)(x-2) is a factor of F(x). Find also the remaining factor of F(x).


Solution.

\begin{aligned} F(1) & = (b-c)(1)^3 - (a+2b-3c)(1)^2 - (b+2c-3a)(1) - 2(a-b) = 0 \\ F(2) & = (b-c)(2)^3 - (a+2b-3c)(2)^2 - (b+2c-3a)(2) - 2(a-b) = 0 \\ \end{aligned}

\therefore (x-1)(x-2) is a factor of F(x).

By trial-and-error,

\begin{aligned} F(3) & = (b-c)(3)^3-(a+2b-3c)(3)^2-(b+2c-3a)(3)-2(a-b) \\ & = -2a+8b-6c \\ & \neq 0 \\ F(4) & = (b-c)(4)^3-(a+2b-3c)(4)^2-(b+2c-3a)(4)-2(a-b) \\ & = -6a+30b-24c \\ & \neq 0 \\ F(5) & = (b-c)(5)^3-(a+2b-3c)(5)^2-(b+2c-3a)(5)-2(a-b) \\ & = -12a+112b-60c \\ & \neq 0 \\ F(6) & = (b-c)(6)^3-(a+2b-3c)(6)^2-(b+2c-3a)(6)-2(a-b) \\ & = -20a+140b-120c \\ & \neq 0 \\ F(7) & = (b-c)(7)^3-(a+2b-3c)(7)^2-(b+2c-3a)(7)-2(a-b) \\ & = -30a+240b-210c \\ & \neq 0 \\ F(8) & = (b-c)(8)^3-(a+2b-3c)(8)^2-(b+2c-3a)(8)-2(a-b) \\ & = -42a+378b-336c \\ & \neq 0 \\ F(9) & = (b-c)(9)^3-(a+2b-3c)(9)^2-(b+2c-3a)(9)-2(a-b) \\ & = -56a + 560b - 504c \\ & \neq 0 \end{aligned}

It may be feasible to work in this manner, however endlessly, to find a zero. But it is high time for me to work in another way round.

By long division, the remaining factor is

(b-c)x+(b-a).

One should check that

\begin{aligned} &\quad (x-1)(x-2)\big( (b-c)x+(b-a)\big) \\ & = (x^2-3x+2)\big( (b-c)x+(b-a)\big) \\ & = (b-c)x^3 - (a+2b-3c)x^2 - (b+2c-3a)x - 2(a-b) \\ & = F(x) \\ \end{aligned}

Remark.

This remaining zero, i.e., \displaystyle{x=\frac{b-a}{b-c}}, is hard to find by trial-and-error, so long division is necessary.

Roughwork.

\begin{aligned} & (b-c)x & +(-a+b) & & \\\cline{2-5} x^2-3x+2\quad \Big)& (b-c)x^3 & +(-a-2b+3c)x^2 & +(3a-b-2c)x & +(-2a+2b) \\ & (b-c)x^3 & +(-3b+3c)x^2 & + (2b-2c)x & \\\cline{2-5} & & (-a+b)x^2 & +(3a-3b)x & + (-2a+2b) \\ & & (-a+b)x^2 & +(3a-3b)x & + (-2a+2b) \\\cline{3-5} \end{aligned}

202110121413 Exercise 8.5.B (Q21)

This exercise is related to Einstein’s famous law E=mc^2. The relativistic momentum p of a particle of mass m moving at a speed v along a straight line (say, the x-axis) is

\displaystyle{p=\frac{mv}{\sqrt{1-\frac{v^2}{c^2}}}},

where c is the speed of light. The relativistic force on the particle along that line is

\displaystyle{F=\frac{\mathrm{d}p}{\mathrm{d}t}},

which is the same formula as Newton’s Second Law of motion in classical mechanics. Assume that the particle starts at rest at position x_1 and ends at position x_2 along the x-axis. The work done by the force F on the particle is:

\displaystyle{W=\int_{x_1}^{x_2}F\,\mathrm{d}x=\int_{x_1}^{x_2}\frac{\mathrm{d}p}{\mathrm{d}t}\,\mathrm{d}x}

(a) Show that

\displaystyle{\frac{\mathrm{d}p}{\mathrm{d}v}=\frac{m}{\bigg( \displaystyle{1-\frac{v^2}{c^2}}\bigg)^{3/2}}}.

(b) Use the Chain Rule formula

\displaystyle{\frac{\mathrm{d}p}{\mathrm{d}t}=\frac{\mathrm{d}p}{\mathrm{d}v}\frac{\mathrm{d}v}{\mathrm{d}x}\frac{\mathrm{d}x}{\mathrm{d}t}}

to show that

\displaystyle{F\,\mathrm{d}x=v\frac{\mathrm{d}p}{\mathrm{d}v}\,\mathrm{d}v}.

(c) Use parts (a) and (b) to show that

\displaystyle{W=\int_{0}^{v}\frac{\mathrm{d}p}{\mathrm{d}v}\, v\,\mathrm{d}v=\int_{0}^{v}\frac{mv}{\bigg(\displaystyle{ 1-\frac{v^2}{c^2}}\bigg)^{3/2}}\,\mathrm{d}v}.

(d) Use part (c) to show that

\displaystyle{W=\frac{mc^2}{\sqrt{1-\frac{v^2}{c^2}}}-mc^2}.

(e) Define the relativistic kinetic energy K of the particle to be K=W, and define the total energy E to be

\displaystyle{E=\frac{mc^2}{\sqrt{1-\frac{v^2}{c^2}}}}.

So by part (d), K=E-mc^2. Show that

E^2=p^2c^2+(mc^2)^2.

(Hint: Expand the right side of that equation.)

(f) What is E when the particle is at rest?


Solution.

(a)

\begin{aligned} \frac{\mathrm{d}p}{\mathrm{d}v} & = \frac{\mathrm{d}}{\mathrm{d}v}\bigg( \frac{mv}{\sqrt{1-\frac{v^2}{c^2}}}\bigg) \\ & = \frac{\bigg(\sqrt{1-\displaystyle{\frac{v^2}{c^2}}}\bigg)(m)-(mv)\bigg(\displaystyle{\frac{1}{2}}\Big( 1-\displaystyle{\frac{v^2}{c^2}}\Big)^{-1/2}\Big( -\displaystyle{\frac{2v}{c^2}}\Big)\bigg)}{\bigg(\sqrt{1-\displaystyle{\frac{v^2}{c^2}}}\bigg)^2} \\ & = \frac{\bigg( 1-\displaystyle{\frac{v^2}{c^2}}\bigg) (m)-(mv)\bigg( \displaystyle{-\frac{v}{c^2}}\bigg)}{\bigg( 1-\displaystyle{\frac{v^2}{c^2}}\bigg)^{3/2}} \\ & = \frac{m}{\bigg( 1-\displaystyle{\frac{v^2}{c^2}}\bigg)^{3/2}} \end{aligned}

(b)

\begin{aligned} \int_{x_1}^{x_2}F\,\mathrm{d}x & = \int_{x_1}^{x_2}\frac{\mathrm{d}p}{\mathrm{d}t}\,\mathrm{d}x \\ \int_{x_1}^{x_2}F\,\mathrm{d}x & = \int_{x_1}^{x_2}\frac{\mathrm{d}p}{\mathrm{d}v}\frac{\mathrm{d}v}{\mathrm{d}x}\frac{\mathrm{d}x}{\mathrm{d}t}\,\mathrm{d}x \\ F\,\mathrm{d}x & = \frac{\mathrm{d}p}{\mathrm{d}v}\frac{\mathrm{d}v}{\mathrm{d}x}\frac{\mathrm{d}x}{\mathrm{d}t}\,\mathrm{d}x \\ & = v\,\frac{\mathrm{d}p}{\mathrm{d}v}\,\mathrm{d}v\\ \end{aligned}

(c)

\begin{aligned} W & =\int_{0}^{v}\frac{\mathrm{d}p}{\mathrm{d}v}\, v\,\mathrm{d}v \\ & = \int_{0}^{v}\Bigg( \frac{m}{\big( 1-\frac{v^2}{c^2}\big)^{3/2}}\Bigg) (v)\,\mathrm{d}v\\ & =\int_{0}^{v}\frac{mv}{\bigg(\displaystyle{ 1-\frac{v^2}{c^2}}\bigg)^{3/2}}\,\mathrm{d}v \\ \end{aligned}.

(d)

\begin{aligned} W & = \int_{0}^{v}\frac{mv}{\bigg(\displaystyle{1-\frac{v^2}{c^2}}\bigg)^{3/2}}\,\mathrm{d}v \\ \dots\enspace & \textrm{let }u=\frac{v}{c}\enspace\dots \\ \dots\enspace & \textrm{then }\mathrm{d}v=c\,\mathrm{d}u\enspace\dots \\ & = \int_{0}^{\frac{v}{c}}\frac{mc^2u}{(1-u^2)^{\frac{3}{2}}}\,\mathrm{d}u \\ \dots\enspace & \textrm{let }u=\sin\theta\enspace\dots \\ \dots\enspace & \textrm{then }\mathrm{d}u=\cos\theta\,\mathrm{d}\theta\enspace\dots \\ & = \int\frac{mc^2\sin\theta}{\cos^3\theta}\cdot\cos\theta\,\mathrm{d}\theta \\ & = \int\frac{mc^2\sin\theta}{\cos^2\theta}\,\mathrm{d}\theta \\ \dots\enspace & \textrm{let }w=\cos\theta\enspace\dots \\ \dots\enspace & \textrm{then }\mathrm{d}w=-\sin\theta\,\mathrm{d}\theta\enspace\dots \\ & \quad -\int \frac{mc^2}{w^2}\,\mathrm{d}w \\ & = \frac{mc^2}{w} \\ & = \frac{mc^2}{\cos\theta} \\ & = mc^2\sec\theta \\ & = \frac{mc^2}{\sqrt{1-u^2}} \\ & = \enspace\dots \\ & = \bigg[\frac{mc^2}{\sqrt{1-u^2}}\bigg]\bigg|^{\frac{v}{c}}_{0} \\ & = \frac{mc^2}{\sqrt{1-\displaystyle{\frac{v^2}{c^2}}}}-mc^2 \\ \end{aligned}

Parts (e) and (f) are left to the readers.

202110121137 Exercise 1.1.1

(a) Show that x^2\in\langle x-y^2,xy\rangle in k[x,y] (k any field).

(b) Show that \langle x-y^2,xy,y^2\rangle = \langle x,y^2\rangle.

(c) Is \langle x-y^2,xy\rangle = \langle x^2,xy\rangle? Why or why not?


Definition.

Let f_1,\dots ,f_s\in k[x_1,\dots ,x_n]. We let \langle f_1,\dots ,f_s\rangle denote the collection \langle f_1,\dots ,f_s\rangle = \{ p_1f_1+\cdots +p_sf_s:p_i\in k[x_1,\dots ,x_n]\} for i= 1,\dots ,s.

(a)

\begin{aligned} x^2 & = (x)(x-y^2) + (y)(xy) \\ & \in \langle x-y^2,xy\rangle \\ \end{aligned}

(b)

First, we want to show

\langle x-y^2,xy,y^2\rangle \in \langle x,y^2\rangle.

For any p_1,p_2,p_3\in k[x,y],

\begin{aligned} & \quad \langle x-y^2,xy,y^2\rangle \\ & = (p_1)(x-y^2)+(p_2)(xy)+(p_3)(y^2) \\ & = p_1x-p_1y^2+p_2xy+p_3y^2 \\ & = (p_1+p_2y)(x)+(p_3-p_1)(y^2) \\ & \in \langle x,y^2\rangle \\ \end{aligned}

Next, we want to show

\langle x,y^2\rangle\in\langle x-y^2,xy,y^2\rangle.

For any p_1,p_2\in k[x,y],

\begin{aligned} &\quad \langle x,y^2\rangle \\ & = (p_1)(x)+(p_2)(y^2) \\ & = (p_1)(x-y^2)+(0)(xy)+(p_1+p_2)(y^2) \\ & \in \langle x-y^2,xy,y^2\rangle \\ \end{aligned}

All in all,

\langle x-y^2,xy,y^2\rangle = \langle x,y^2\rangle.

(c) I guess \textrm{\scriptsize{NOT}}.

202110120936 Exercises 13.3.6 (Q43)

Graph each function by algebraically determining its key features. Then state the domain and range of the function.

f(x)=x^2-7x+12


Solution.

\begin{aligned} f(x) & = x^2-7x+12 \\ & = (x-3)(x-4) \end{aligned}

We see that y=f(x)=0 when x=\{ 3,4\}.

i. \therefore The x-intercepts of f(x) are thus (3,0) and (4,0).

Plugging in x=0 will give the y-intercept:

\begin{aligned} y\textrm{-intercept}& = f(0) \\ & = (0)^2-7(0)+12 \\ & = 12 \end{aligned}

ii. \therefore The y-intercept is thus (0,12).

Differentiating y=f(x) with respect to x,

\begin{aligned} & \quad f'(x) \\ & = \frac{\mathrm{d}}{\mathrm{d}x}\big( f(x)\big) \\ & = \frac{\mathrm{d}}{\mathrm{d}x}(x^2-7x+12) \\ & = 2x-7 \\ \end{aligned}

When x=3.5 and f(3.5)=-0.25, the slope of f(x) is zero, i.e., f'(x)=0.

iii. \therefore (\frac{7}{2},-\frac{1}{4}) is a turning point (/extreme point/vertex).

\begin{aligned} y & =f(x) \\ & = x^2-7x+12 \\ & = x^2-7x+\bigg( \frac{7}{2}\bigg)^2 - \bigg( \frac{7}{2}\bigg)^2 + 12 \\ & = \bigg( x-\frac{7}{2}\bigg)^2 - \frac{1}{4}\\ \end{aligned}

iv. \therefore The axis of symmetry of the graph is x=\frac{7}{2}.

Differentiating y=f(x) twice with respect to x,

\begin{aligned} &\quad f''(x)\\ & = \frac{\mathrm{d}}{\mathrm{d}x}\big( f'(x)\big) \\ & = \frac{\mathrm{d}}{\mathrm{d}x}(2x-7) \\ & = 2 \quad (>0)\\ \end{aligned}

We see that the slope is increasing with x.

v. \therefore The graph of f(x) is concave upward (/convex downward).

vi. \therefore The domain is \mathbb{R} and the range \{ y\in\mathbb{R}:y\ge -\frac{1}{4}\}.

202110111120 Solution to 2012-DSE-PHY-1A-5

There are two forces \mathbf{F_1} and \mathbf{F_2}, of constant magnitudes (i.e., F_1=|\mathbf{F_1}|=\textrm{Const.}; F_2=|\mathbf{F_2}|=\textrm{Const.}), acting at the same point. The angle \theta between \mathbf{F_1} and \mathbf{F_2} increases from 0^\circ to 180^\circ.Apparently from the figure, F_1>F_2.

Let the direction of \mathbf{F_2} be fixed due east.

Then,

\begin{aligned} \mathbf{F_1} & = F_1\cos\theta\,\hat{\mathbf{i}}+F_1\sin\theta\,\hat{\mathbf{j}} \\ \mathbf{F_2} & = F_2\,\hat{\mathbf{i}} + 0\,\hat{\mathbf{j}} \\ \mathbf{F_3} & = \mathbf{F_1} + \mathbf{F_2} \\ & = ( F_1\cos\theta + F_2 )\,\hat{\mathbf{i}} + F_1\sin\theta\,\hat{\mathbf{j}} \\ \end{aligned}

\begin{aligned} F_3 & = |\mathbf{F_3}| \\ & = \sqrt{(F_1\cos\theta + F_2)^2+(F_1\sin\theta )^2} \\ & = \sqrt{(F_1)^2\cos^2\theta + 2F_1F_2\cos\theta +(F_2)^2+(F_1)^2\sin^2\theta} \\ & = \sqrt{(F_1)^2+(F_2)^2+2F_1F_2\cos\theta} \\ \end{aligned}

If \theta =0^\circ, then \cos\theta =1 and F_3=F_1+F_2;

if \theta =90^\circ, then \cos\theta =0 and F_3=\sqrt{(F_1)^2+(F_2)^2};

if \theta =180^\circ, then \cos\theta =-1 and F_3=F_1-F_2.

By the triangle inequality,

F_1+F_2>F_3=\sqrt{(F_1)^2+(F_2)^2}.

So the magnitude F_3 of the resultant force \mathbf{F_3} decreases throughout.


(Countercheck)

Differentiating F_3 w.r.t. \theta,

\begin{aligned} \quad \frac{\mathrm{d}}{\mathrm{d}\theta}(F_3) & = \frac{\mathrm{d}}{\mathrm{d}\theta} \sqrt{(F_1)^2+(F_2)^2+2F_1F_2\cos\theta} \\ & = \frac{-F_1F_2\sin\theta}{\sqrt{(F_1)^2+(F_2)^2+2F_1F_2\cos\theta}}\\ \end{aligned}

As \sin\theta \ge 0 for 0\le \theta \le \pi, and \sqrt{[\cdots ]}\ge 0, we have

\displaystyle{\frac{\mathrm{d}F_3}{\mathrm{d}\theta}\le 0}.

And the answer is A.

202110110958 Sidenote (Section 3.8.2)

Given that the binomial coefficient is so defined as

\begin{pmatrix} N \\ n \end{pmatrix} \stackrel{\textrm{def}}{=} \displaystyle{\frac{N!}{n!(N-n)!}}.

Prove the identities (3.49), (3.50), and (3.51) in Section 3.8.2 Useful Identities for the Binomial Coefficients. Namely,

Eq. (3.49):

\begin{pmatrix} N \\ 0 \end{pmatrix} = \begin{pmatrix} N \\ N \end{pmatrix} = 1

Eq. (3.50):

\begin{pmatrix} N - 1 \\ n \end{pmatrix} + \begin{pmatrix} N - 1 \\ n-1 \end{pmatrix} = \begin{pmatrix} N \\ n \end{pmatrix}

Eq. (3.51):

\begin{pmatrix} N \\ n+1 \end{pmatrix} = \displaystyle{\frac{N-n}{n+1}}\begin{pmatrix} N \\ n \end{pmatrix}

R. H. Swendsen. (2012). An Introduction to Statistical Mechanics and Thermodynamics


Proof of Eq. (3.49).

\begin{aligned} \begin{pmatrix} N \\ 0 \end{pmatrix} & = \frac{N!}{0!(N-0)!} \\ & = \frac{N!}{1\times N!} \\ & = 1 \end{aligned}
\begin{aligned} \begin{pmatrix} N \\ N \end{pmatrix} & = \frac{N!}{N!(N-N)!} \\ & = \frac{N!}{N!\times 1} \\ & = 1 \end{aligned}

Proof of Eq. (3.50).

\begin{aligned} & \quad \begin{pmatrix} N-1 \\ n \end{pmatrix} + \begin{pmatrix} N-1 \\ n-1 \end{pmatrix} \\ & = \frac{(N-1)!}{(n)!(N-1-n)!} + \frac{(N-1)!}{(n-1)!\big((N-1)-(n-1)\big)!} \\ & = \frac{(N-1)!}{(n)!(N-1-n)!} + \frac{(N-1)!}{(n-1)!(N-n)!} \\ & = \frac{(N-n)(N-1)!+(n)(N-1)!}{(n)(n-1)!(N-n)(N-n-1)!} \\ & = \frac{N(N-1)!}{n!(N-n)!} \\ & = \frac{N!}{n!(N-n)!} \\ & = \begin{pmatrix} N \\ n \end{pmatrix} \\ \end{aligned}

Proof of Eq. (3.51).

\begin{aligned} &\quad \begin{pmatrix} N \\ n+1 \end{pmatrix} \\ & = \frac{N!}{(n+1)!\big(N-(n+1)\big) !} \\ & = \frac{(N!)(N-n)}{\big( (n+1)(n!)\big) \big( (N-n)(N-n-1)! \big)} \\ & = \bigg(\frac{N-n}{n+1}\bigg)\bigg(\frac{N!}{n!(N-n)!}\bigg) \\ & = \frac{N-n}{n+1}\begin{pmatrix} N \\n \end{pmatrix} \\ \end{aligned}

QED