202109101556 Exercises 1.2.C (Q16)

For Exercises 16-21, assuming that f'(x) exists, prove the given formula.

f'(x)=\displaystyle{\lim_{h\to 0}\frac{f(x+2h)-f(x-2h)}{4h}}


Proof.

Renaming by dummy variables.

Let y=x-2h, then x+2h=(x-2h)+4h=y+4h.

Rewrite it as

f'(x)=\displaystyle{\lim_{h\to 0}\frac{f(y+4h)-f(y)}{4h}}.

Note that

\displaystyle{\lim_{h\to 0}}[\,\cdots ]\Rightarrow \displaystyle{\lim_{4h\to 0}}[\,\cdots ].

So,

\begin{aligned} f'(x) & = \lim_{4h\to 0}\frac{f(y+4h)-f(y)}{4h} \\ & = \lim_{\Delta y\to 0}\frac{f(y+\Delta y)-f(y)}{\Delta y} \\ & = \lim_{\Delta y\to 0}\frac{\Delta f}{\Delta y}\\ & = \frac{\mathrm{d}f}{\mathrm{d}y}\\ & = \dots\enspace \textrm{(discontinued)}\enspace \dots \\ \end{aligned}

Do you spot the flaw in the Proof?


(revised)

As left-hand limit and right-hand limit are equivalent,

i.e., f'(x)=\displaystyle{\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}=\lim_{h\to 0}\frac{f(x)-f(x-h)}{h}},

in our scenario, do write

\begin{aligned} f'(x) & = \lim_{2h\to 0}\frac{f(x+2h)-f(x)}{2h}=\lim_{2h\to 0}\frac{f(x)-f(x-2h)}{2h} \\ \frac{1}{2}f'(x) & =\lim_{2h\to 0}\frac{f(x+2h)-f(x)}{4h}=\lim_{2h\to 0}\frac{f(x)-f(x-2h)}{4h}\\ \end{aligned}

Then

\begin{aligned} & \quad \lim_{h\to 0}\frac{f(x+2h)-f(x-2h)}{4h} \\ & = \lim_{h\to 0}\frac{\big( f(x+2h)-f(x)\big) + \big( f(x)-f(x-2h) \big) }{4h} \\ & = \lim_{h\to 0}\frac{f(x+2h)-f(x)}{4h} + \lim_{h\to 0}\frac{f(x)-f(x-2h)}{4h} \\ & = \lim_{2h\to 0}\frac{f(x+2h)-f(x)}{4h} + \lim_{2h\to 0}\frac{f(x)-f(x-2h)}{4h} \\ & = \frac{1}{2}\cdot f'(x)+\frac{1}{2}\cdot f'(x) \\ & = f'(x) \\ \end{aligned}

QED

Leave a Reply

Your email address will not be published. Required fields are marked *