202105241204 Homework 1 (Q3)

Prove

(a) \nabla \times (f\mathbf{A}) = f(\nabla \times \mathbf{A})-A\times (\nabla f)

(b) \nabla \times (\mathbf{A}\times \mathbf{B})=(\mathbf{B}\cdot\nabla )\mathbf{A}+(\nabla\cdot\mathbf{B})\mathbf{A}-(\mathbf{A}\cdot\nabla )\mathbf{B}-(\nabla\cdot\mathbf{A})\mathbf{B}


Attempts. (brute force)

(a)

\begin{aligned} & \quad \nabla\times (f\mathbf{A}) \\ & = \nabla \times (fA_x,fA_y,fA_z) \\ & = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ fA_x & fA_y & fA_z \end{vmatrix} \\ & = \bigg( \frac{\partial}{\partial y}(fA_z)-\frac{\partial}{\partial z}(fA_y),\, \frac{\partial}{\partial z}(fA_x) - \frac{\partial}{\partial x}(fA_z),\, \frac{\partial}{\partial x}(fA_y) - \frac{\partial}{\partial y}(fA_x) \bigg) \\ & = \Bigg( \bigg( f\frac{\partial A_z}{\partial y} + \frac{\partial f}{\partial y}A_z - f\frac{\partial A_y}{\partial z} - \frac{\partial f}{\partial z}A_y \bigg) , \\ & \quad \qquad \bigg( f\frac{\partial A_x}{\partial z} + \frac{\partial f}{\partial z}A_x - f\frac{\partial A_z}{\partial x} - \frac{\partial f}{\partial x}A_z \bigg) , \\ & \qquad \qquad \bigg( f\frac{\partial A_y}{\partial x}-\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y}A_x - f\frac{\partial A_x}{\partial y} \bigg) \Bigg) \\ & = f\Bigg( \bigg( \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \bigg) ,\, \bigg( \frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial z} \bigg),\, \bigg( \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\bigg) \Bigg) \\ & \quad \qquad + \bigg( \frac{\partial f}{\partial y}A_z - \frac{\partial f}{\partial z}A_y,\, \frac{\partial f}{\partial z}A_x - \frac{\partial f}{\partial x}A_z,\, \frac{\partial f}{\partial x}A_y - \frac{\partial f}{\partial y}A_x \bigg) \\ & = f(\nabla \times \mathbf{A}) + \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z} \\ A_x & A_y & A_z \end{vmatrix} \\ & = f(\nabla \times \mathbf{A}) + (\nabla f)\times\mathbf{A} \\ & = f(\nabla \times \mathbf{A}) - \mathbf{A}\times (\nabla f) \\ \end{aligned}

(b)

\begin{aligned} \textrm{LHS}\enspace & = \nabla \times (\mathbf{A}\times \mathbf{B}) \\ & = \nabla \times (A_yB_z-A_zB_y,\, -A_xB_z+A_zB_x,\, A_xB_y-A_yB_x) \\ & = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_yB_z-A_zB_y & -A_xB_z + A_zB_x & A_xB_y - A_yB_x \end{vmatrix} \\ & = \Bigg( \bigg( \frac{\partial}{\partial y}(A_xB_y) - \frac{\partial}{\partial y}(A_yB_x) - \frac{\partial}{\partial z}(A_xB_z) + \frac{\partial}{\partial z}(A_zB_x) \bigg) ,\, \\ & \quad \qquad \bigg( -\frac{\partial}{\partial x}(A_xB_y) + \frac{\partial}{\partial x}(A_yB_x) + \frac{\partial}{\partial z}(A_yB_z) - \frac{\partial}{\partial z}(A_zB_y) \bigg) ,\, \\ & \qquad \qquad \bigg( \frac{\partial}{\partial x}(-A_xB_z) - \frac{\partial}{\partial x}(A_zB_x) - \frac{\partial}{\partial y}(A_yB_z) + \frac{\partial}{\partial y}(A_zB_y) \bigg) \Bigg) \\ & = \Bigg( \bigg( A_x\frac{\partial B_y}{\partial y} + \frac{\partial A_x}{\partial y}B_y - A_y\frac{\partial B_x}{\partial y} - \frac{\partial A_y}{\partial y}B_x - A_x\frac{\partial B_z}{\partial z} - \frac{\partial A_x}{\partial z}B_z + A_z\frac{\partial B_x}{\partial z} + \frac{\partial A_z}{\partial z}B_x \bigg) ,\, \\ & \quad \qquad \bigg( -A_x\frac{\partial B_y}{\partial x} - \frac{\partial A_x}{\partial x}B_y + A_y\frac{\partial B_x}{\partial x}+\frac{\partial A_y}{\partial x}B_x + A_y\frac{\partial B_z}{\partial z} + \frac{\partial A_y}{\partial z}B_z - A_z\frac{\partial B_y}{\partial z} - \frac{\partial A_z}{\partial z}B_y \bigg) ,\, \\ & \qquad \qquad \bigg( A_x\frac{\partial B_z}{\partial x} + \frac{\partial A_x}{\partial x}B_z - A_z\frac{\partial B_x}{\partial x} - \frac{\partial A_z}{\partial x}B_x - A_y\frac{\partial B_z}{\partial y} - \frac{\partial A_y}{\partial y}B_z + \frac{\partial A_z}{\partial y}B_y + A_z\frac{\partial B_y}{\partial y} \bigg) \Bigg) \\ \end{aligned}

\textrm{RHS}=(\mathbf{B}\cdot\nabla )\mathbf{A}+(\nabla\cdot\mathbf{B})\mathbf{A}-(\mathbf{A}\cdot\nabla )\mathbf{B}-(\nabla\cdot\mathbf{A})\mathbf{B}

Inspect these four terms on the right hand side by expanding one after the other.

The first term being

\begin{aligned} (\mathbf{B}\cdot\nabla )\mathbf{A} & = \bigg( B_x\frac{\partial}{\partial x} + B_y\frac{\partial}{\partial y} + B_z\frac{\partial}{\partial z} \bigg) \mathbf{A} \\ & = \bigg( B_x\frac{\partial A_x}{\partial x} + B_y\frac{\partial A_x}{\partial y} + B_z\frac{\partial A_x}{\partial z},\, \\ & \quad \qquad B_x\frac{\partial A_y}{\partial x} + B_y\frac{\partial A_y}{\partial y} + B_z\frac{\partial A_y}{\partial z},\, \\ & \qquad \qquad B_x\frac{\partial A_z}{\partial x} + B_y\frac{\partial A_z}{\partial y} + B_z\frac{\partial A_z}{\partial z} \bigg)\end{aligned}

the second term being

\begin{aligned} (\nabla \cdot \mathbf{B})\mathbf{A} & = \bigg( \frac{\partial B_x}{\partial x} + \frac{\partial B_y}{\partial y} + \frac{\partial B_z}{\partial z}\bigg)\mathbf{A} \\ & = \bigg( \frac{\partial B_x}{\partial x}A_x + \frac{\partial B_y}{\partial y}A_x + \frac{\partial B_z}{\partial z}A_x ,\, \\ & \quad \qquad \frac{\partial B_x}{\partial x}A_y + \frac{\partial B_y}{\partial y}A_y + \frac{\partial B_z}{\partial z}A_y , \, \\ & \qquad \qquad \frac{\partial B_x}{\partial x}A_z + \frac{\partial B_y}{\partial y}A_z + \frac{\partial B_z}{\partial z}A_z \bigg) \\ \end{aligned}

the third term being

\begin{aligned} -(\mathbf{A}\cdot\nabla )\mathbf{B} & = - \bigg( A_x\frac{\partial}{\partial x} + A_y\frac{\partial}{\partial y} + A_z\frac{\partial}{\partial z} \bigg) \mathbf{B} \\ & = -\bigg( A_x\frac{\partial B_x}{\partial x} + A_y\frac{\partial B_x}{\partial y} + A_z\frac{\partial B_x}{\partial z},\, \\ & \quad\qquad A_x\frac{\partial B_y}{\partial x} + A_y\frac{\partial B_y}{\partial y} + A_z\frac{\partial B_y}{\partial z},\, \\ & \qquad\qquad A_x\frac{\partial B_z}{\partial x} + A_y\frac{\partial B_z}{\partial y} + A_z\frac{\partial B_z}{\partial z} \bigg) \\\end{aligned}

and the fourth and last term being

\begin{aligned} -(\nabla \cdot \mathbf{A})\mathbf{B} & = -\bigg( \frac{\partial A_x}{\partial x} +\frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z} \bigg)\mathbf{B} \\ & = - \bigg( B_x\frac{\partial A_x}{\partial x} + B_x\frac{\partial A_y}{\partial y} + B_x\frac{\partial A_z}{\partial z} ,\, \\ & \quad\qquad B_y\frac{\partial A_x}{\partial x} + B_y\frac{\partial A_y}{\partial y} + B_y\frac{\partial A_z}{\partial z} ,\, \\ & \qquad \qquad B_z\frac{\partial A_x}{\partial x} + B_z\frac{\partial A_y}{\partial y} + B_z\frac{\partial A_z}{\partial z}\bigg) \\ \end{aligned}

One can check that \textrm{LHS}=\textrm{RHS}.


Solution. (proof)

(The solution below is based on the manuscript of 2016-2017 PHYS3450 Electromagnetism Homework 1 Solution.)

Using Einstein summation (/notation) and the Levi-Civita symbol \varepsilon_{ijk},

(a)

\begin{aligned} & \quad \nabla \times (f\mathbf{A}) \\ & = \sum_{i,j,k}\hat{\mathbf{e}}_i\frac{\partial}{\partial j}(f\mathbf{A}_k)\cdot\varepsilon_{ijk}\qquad\qquad\qquad i,j,k\in\{ x,y,z\} \\ & = \sum_{i,j,k}\hat{\mathbf{e}}_i\bigg(\frac{\partial}{\partial j}f\bigg)\cdot A_k\cdot\varepsilon_{ijk}+\sum_{i,j,k}\hat{\mathbf{e}}_i\bigg( \frac{\partial}{\partial j}A_k \bigg)\cdot f\cdot \varepsilon_{ijk} \\ & = (\nabla f)\times \mathbf{A} + f\cdot (\nabla\times\mathbf{A}) \\ & = (\nabla f)\times \mathbf{A} - A\times (\nabla f) \end{aligned}

(b)

\begin{aligned} \mathbf{A}\times\mathbf{B} & = \sum_{k,l,m}\hat{\mathbf{e}}_kA_lB_m\varepsilon_{klm}\\ \nabla\times (\mathbf{A}\times\mathbf{B}) & = \sum_{i,j,k}\hat{\mathbf{e}}_i\frac{\partial}{\partial j}(\sum_{l,m}A_lB_m\varepsilon_{klm})\varepsilon_{ijk} \\ & = \sum_{i,j,k,l,m}\hat{\mathbf{e}}_i \bigg[ \bigg( \frac{\partial}{\partial j}A_l \bigg) B_m + A_l\cdot \bigg( \frac{\partial}{\partial j}B_m\bigg) \bigg] \varepsilon_{klm}\varepsilon_{ijk} \\ \textrm{by } & \varepsilon_{klm}\varepsilon_{ijk} = \delta_{il}\delta_{jm} - \delta_{im}\delta_{jl} \\ \textrm{Thus, }& = \sum_{i,j,k,l,m}\hat{\mathbf{e}}_i \bigg[ \bigg( \frac{\partial}{\partial j}A_l \bigg) B_m + A_l\cdot \bigg( \frac{\partial}{\partial j}B_m\bigg) \bigg] (\delta_{il}\delta_{jm}-\delta_{im}\delta_{jl}) \\ & = \sum_{i,j,k,l,m}\bigg[ \hat{\mathbf{e}}_i\bigg( \frac{\partial}{\partial j}A_l \bigg) B_m\delta_{il}\delta_{jm} + \hat{\mathbf{e}}_i\bigg( \frac{\partial}{\partial j}A_l \bigg) B_m (-\delta_{im}\delta_{jl}) \\ & \quad\qquad + \hat{\mathbf{e}}_i\bigg( \frac{\partial}{\partial j}B_m\bigg) A_l\delta_{il}\delta_{jm} + \hat{\mathbf{e}}_i \bigg( \frac{\partial}{\partial j}B_m \bigg) A_l (-\delta_{im}\delta_{jl}) \bigg] \\ & = (\mathbf{B}\cdot\nabla )\mathbf{A}+(\nabla\cdot\mathbf{B})\mathbf{A}-(\mathbf{A}\cdot\nabla )\mathbf{B}-(\nabla\cdot\mathbf{A})\mathbf{B} \end{aligned}

QED

and the proof is more concise.