202101141547 Homework 1 (Q5)

Let G=\mathbb{Z}_2.

(a) Describe all the elements in \mathrm{Perm}(G) and the maps l_a for a\in \mathbb{Z}_2. Is l surjective? (Use the notation \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ \end{pmatrix} to denote the map sending from 0 to 1 and from 1 to 0.)

(b) Repeat part (a) for the group G=\mathbb{Z}_3.


Setup.

\textrm{Perm}(X) is the set of all bijective maps from X to itself. And the group (\textrm{Perm}(X),\circ ) is the group where \circ is the composition of maps.

l:G\rightarrow \textrm{Perm}(G),\enspace a\mapsto l_a\qquad \forall\, a\in G

is the group embedding of G into \textrm{Perm}(G), where

l_a:G\rightarrow G,\enspace g\mapsto ag\qquad g\in G

is the left translation of G.


(a)

Thus, the elements of \textrm{Perm}(\mathbb{Z}_2) are altogether the following bijections:

\begin{aligned} & \\ [0] & \mapsto [0] \\ [1] & \mapsto [1] \end{aligned}

and

\begin{aligned} & \\ [0] & \mapsto [1] \\ [1] & \mapsto [0] \end{aligned},

or equivalently, in matrices,

\begin{pmatrix} 0 & 0 \\ 1 & 1 \\ \end{pmatrix} and \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ \end{pmatrix}

The left translation l_0 is

l_0:\mathbb{Z}_2\rightarrow\mathbb{Z}_2,\enspace g\mapsto 0g\qquad g\in\{ 0,1\}= \mathbb{Z}_2

But [0]+[0]=[0]\quad (\mathrm{mod}\,2) and [0]+[1]=[1]\quad (\mathrm{mod}\,2),
hence in matrix l_0 is \begin{pmatrix} 0 & 0 \\ 1 & 1 \\ \end{pmatrix}.

The left translation l_1 is

l_1:\mathbb{Z}_2\rightarrow\mathbb{Z}_2,\enspace g\mapsto 1g\qquad g=\{ 0,1\}\in \mathbb{Z}_2

But [1]+[0]=[1]\quad (\mathrm{mod}\,2) and [1]+[1]=[0]\quad (\mathrm{mod}\,2),
hence in matrix l_1 is \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ \end{pmatrix}.

It is hence checked that the range of the left translations l_0, l_1 is inside (or, more precisely, equal to) the codomain \textrm{Perm}(\mathbb{Z}_2)

Then, I can say l:\mathbb{Z}_2\rightarrow\mathrm{Perm}(\mathbb{Z}_2), the mappings of which are explicitly the following two:

0\mapsto \begin{pmatrix} 0 & 0 \\ 1 & 1 \\ \end{pmatrix} and 1\mapsto \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ \end{pmatrix};

by the definition l(a): a\mapsto l_a\qquad \forall\, a\in\{ [0],[1]\}=\mathbb{Z}_2.

Recall that a function is said to be surjective if the range of function constitutes its whole codomain. Thus, l is surjective.


(b)

Let G=\mathbb{Z}_3(=\{ [0],[1],[2] \}).

All the one-to-one mappings are listed as follows:

\textrm{Perm}(\mathbb{Z}_3)=\Bigg\{ \begin{pmatrix} 0 & 0 \\ 1 & 1 \\ 2 & 2 \\ \end{pmatrix},\begin{pmatrix} 0 & 0 \\ 1 & 2 \\ 2 & 1 \\ \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 2 & 2 \\ \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 2 \\ 2 & 0 \\ \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 1 & 0 \\ 2 & 1 \\ \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 1 & 1 \\ 2 & 0 \\ \end{pmatrix}\Bigg\}.

First, the left translation l_0 is

l_0:\mathbb{Z}_3\rightarrow\mathbb{Z}_3,\enspace g\mapsto 0g\qquad g\in\{ 0,1,2\}=\mathbb{Z}_3

Since [0]+[0]=[0]\quad (\mathrm{mod}\,3), [0]+[1]=[1]\quad (\mathrm{mod}\,3), and [0]+[2]=[2]\quad (\mathrm{mod}\,3), I may write

l_0=\begin{pmatrix} 0 & 0 \\ 1 & 1 \\ 2 & 2 \\ \end{pmatrix}.

Secondly, the left translation l_1 is

l_1:\mathbb{Z}_3\rightarrow\mathbb{Z}_3,\enspace g\mapsto 1g\qquad g\in\{ 0,1,2\}=\mathbb{Z}_3

Since [1]+[0]=[1]\quad (\mathrm{mod}\,3), [1]+[1]=[2]\quad (\mathrm{mod}\,3), and [1]+[2]=[0]\quad (\mathrm{mod}\,3), I may write

l_1=\begin{pmatrix} 0 & 1 \\ 1 & 2 \\ 2 & 0 \\ \end{pmatrix}.

Thirdly and lastly, the left translation l_2 is

l_2:\mathbb{Z}_3\rightarrow\mathbb{Z}_3,\enspace g\mapsto 2g\qquad g\in\{ 0,1,2\}=\mathbb{Z}_3

Since [2]+[0]=[2]\quad (\mathrm{mod}\,3), [2]+[1]=[0]\quad (\mathrm{mod}\,3), and [2]+[2]=[1]\quad (\mathrm{mod}\,3), I may write

l_2=\begin{pmatrix} 0 & 2 \\ 1 & 0 \\ 2 & 1 \\ \end{pmatrix}.

To sum up what is up till now, l_a=\Bigg\{ \begin{pmatrix} 0 & 0 \\ 1 & 1 \\ 2 & 2 \\ \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 2 \\ 2 & 0 \\ \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 1 & 0 \\ 2 & 1 \\ \end{pmatrix}\Bigg\}

Then, I can say l:\mathbb{Z}_3\rightarrow\mathrm{Perm}(\mathbb{Z}_3), the mappings of which are explicitly the following three:

0\mapsto \begin{pmatrix} 0 & 0 \\ 1 & 1 \\ 2 & 2 \\ \end{pmatrix}, 1\mapsto \begin{pmatrix} 0 & 1 \\ 1 & 2 \\ 2 & 0\\ \end{pmatrix}, and 2\mapsto\begin{pmatrix} 0 & 2 \\ 1 & 0 \\ 2 & 1 \\ \end{pmatrix}.

by the definition l(a): a\mapsto l_a\qquad \forall\, a\in\{ [0],[1],[2]\}=\mathbb{Z}_2.

l in the case of \mathbb{Z}_3 is \textrm{\scriptsize NOT} surjective because in the codomain \mathbb{Z}_3, the following three elements

\begin{pmatrix} 0 & 0 \\ 1 & 2 \\ 2 & 1 \\ \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 2 & 2 \\ \end{pmatrix}, and \begin{pmatrix} 0 & 2 \\ 1 & 1 \\ 2 & 0 \\ \end{pmatrix}

are not inside the range of l.

202101141538 Homework 1 (Q4)

\phi :G_1\rightarrow G_2 is said to be a group embedding if it is an injective group homomorphism.

For a group G and a\in G, we define the left translation of G by a

l_a:G\rightarrow G, g\mapsto ag,\qquad g\in G.

Thus l is a mapping from a value into a function of the value.

I would like to first check that l is a homomorphism,

i.e., l(a_1a_2)=l(a_1)l(a_2).

\begin{aligned} \textrm{LHS} & = l(a_1a_2)\\ & =l_{a_1a_2}(g)\qquad\qquad (g\in G)\\ & = a_1a_2g\qquad\qquad (a_1,a_2\in G)\\ & = l_{a_1}(l_{a_2}(g))\\ & =(l_{a_1}\circ l_{a_2})(g)\qquad\qquad (\circ\,\textrm{as the operation in }\textrm{Perm}(G))\\ & = (l_{a_1}l_{a_2})(g)\\ & = l(a_1)l(a_2)\\ & = \textrm{RHS}\\ \end{aligned}

\therefore l is a homomorphism.

Secondly, I would like to check that l is injective.

If l(a_1)\neq l(a_2), or l_{a_1}(g)\neq l_{a_2}(g), or, a_1g\neq a_2g for a_1,a_2, g\in G, then a_1gg^{-1}\neq a_2gg^{-1} guaranteed that the inverse of g always exists in G. It follows that a_1\neq a_2.

\therefore l is injective.

In conclusion, l is a group embedding.

202101141527 Homework 2 (Q3)

Let G be a group and e\neq a\in G in which e is the identity of G. Suppose \mathrm{ord}(a)=n.

i. If a^h=e, show that n\big| h.

ii. Evaluate the order of a^m where m is an integer.

iii. Show that |H|=n/(m,n) if G=\langle a\rangle and H=\langle a^m\rangle where m\in\mathbb{N}.

iv. If G is cyclic of order n, show that for any d\big| n, there exists a subgroup of order d in G. Could G have more than one subgroup of order d? (Clearly the answer is no if d=1 or n.) Justify with a proof (if you think yes) or give a counterexample (if you think no).


Attempts.

i. By Division Algorithm, h=qn+r for some q\in\mathbb{Z} and 0\le r<n. Then one may write a^r=a^{h-qn}=a^h(a^n)^{-q}=e. It can be seen that r must be 0 lest a^r=e where 1\le r<n contradicts to the assumption that n=\mathrm{ord}(a) where n is the smallest positive integer such that a^n=e. Thus h=qn, and n|h.

ii. First, (a^m)^{\frac{n}{(n,m)}}=a^{\frac{mn}{(n,m)}}=(a^n)^{\frac{m}{(n,m)}}=e^{\frac{m}{(n,m)}}=e. Secondly, if k\in\mathbb{N} such that (a^m)^k=e, from the result of part i. previously, it follows that \frac{n}{(n,m)}|k because if a|bc and (a,b)=1, then a|c (here a=\frac{n}{(n,m)}), b=\frac{m}{(n,m)}, and c=k. Such a k will always be greater than or equal to \frac{n}{(n,m)}. Thus \mathrm{ord}(a^m)=\frac{n}{(n,m)}.

iii. If H=\langle a^m\rangle then |H|=\mathrm{ord}(a^m)\stackrel{\textrm{by (ii)}}{=}\frac{n}{(n,m)}.

iv. Let G=\langle a\rangle as it is cyclic. Let m=n/d where d|n is given in the problem. The order of the cyclic subgroup \langle a^m\rangle of G is then \frac{n}{(n,m)}=\frac{n}{m}=d, in view of the result in part iii. We have constructed a subgroup of order d in \langle a\rangle where d|n.

We wish to prove that it is unique: If H is a subgroup of G=\langle a\rangle and |H|=d, then H=\langle a^{\frac{n}{d}}\rangle. Note that H=\langle a^m\rangle and \frac{n}{(n,m)}=d. Consider the subgroup \langle a^{\frac{n}{d}}\rangle. Because \frac{n}{d}=(n,m) divides m, we have a^m\in \langle a^{\frac{n}{d}}\rangle and thus H\subset \langle a^{\frac{n}{d}}\rangle. From the result of part iii. it follows that |\langle a^{\frac{n}{d}}\rangle | =\frac{n}{(n,\frac{n}{d})}=d. Thus H=\langle a^{\frac{n}{d}}\rangle is unique.

202101141501 Homework 2 (Q1)

Let H be a subset of the group G. Show that H is a subgroup of G if and only if H\neq \emptyset and gh^{-1}\in H whenever g,h\in H.


Attempts.

(only-if part) If H is a subgroup of G, then H must contain the identity e and both x^{-1} and xy is inside H whenever x,y\in H. Thus H\neq \emptyset and for any g,h\in H, h^{-1} is inside H. Thus gh^{-1}\in H.

(if-part) First, because H\neq \emptyset, there exists some x in H such that e=xx^{-1}\in H (by the condition gh^{-1}\in H whenever g,h\in H). This proves the existence of the identity. Secondly, having proven e is in H, and noted that x^{-1}=ex^{-1}\in H whenever e,x\in H, one proves the existence of the inverse. Thirdly, x,y\in H implies xy\in H because y\in H\Rightarrow y^{-1}\in H and also xy=x(y^{-1})^{-1}. H is therefore a subgroup of G.