202009290227 Exercise 2.3.5

Prove that 10^{n+1}+10^n+1 is divisible by 3 for n\in\mathbb{N}.

Extracted from T. W. Judson. (2021). Abstract Algebra Theory and Applications.


Proof.

Let P(n) be the statement:

P(n):\qquad 3\,\Big| (10^{n+1}+10^n+1) for any n\in\mathbb{N}

Determine whether or not P(n) is true when n=1:

P(1): \qquad 3\,\Big| (10^{(1)+1}+10^{(1)}+1)

As 10^{(1)+1}+10^{(1)}+1 = 111 = 37\cdot 3 is divisible by 3, P(1) is true.

Suppose P(n) is true for some n\, (\geqslant 1) \in\mathbb{N}, try and prove the statement P(n+1):

P(n+1): \qquad 3\,\Big| (10^{(n+1)+1}+10^{(n+1)}+1)

\begin{aligned} &\quad 10^{(n+1)+1}+10^{(n+1)}+1 \\ = &\quad 10^{n+1}\cdot 10 + 10^n\cdot 10 +1 \\ = &\quad 10^{n+1}\cdot 10 + 10^n\cdot 10 +10 - 9  \\ = &\quad 10\cdot (10^{n+1}+10^n+1) - 9 \\ \end{aligned}

As P(n) is true and by the fact that three divides nine, 10\cdot (10^{n+1}+10^n+1) - 9 is therefore divisible by 3. That is,

P(n)\textrm{\enspace is true\enspace}\Rightarrow P(n+1)\textrm{\enspace is true\enspace}

That P(n) is true for n=1, by the principle of mathematical induction, I have thus proven 10^{n+1}+10^n+1 is divisible by 3 for n\in\mathbb{N}.

202009290114 Exercise 2.3.1

Prove that

1^2+2^2+\cdots +n^2=\displaystyle{\frac{n(n+1)(2n+1)}{6}}

for n\in\mathbb{N}.


Proof.

Let P(n) be the statement

1^2+2^2+\cdots +n^2=\displaystyle{\frac{n(n+1)(2n+1)}{6}} for n\in\mathbb{N}.

When n=1, check for the validity of P(1):

\begin{aligned} \textrm{LHS} & = 1^2 = 1 \\ \textrm{RHS} & = \frac{(1)\big( (1)+1\big) \big( 2(1)+1\big) }{6} = 1 \\ \end{aligned}

\because \textrm{LHS}=\textrm{RHS}

\therefore P(n) is true for n=1.

Suppose P(n) holds true, let’s see if P(n+1) holds too:

P(n+1):\qquad 1^2+2^2+\cdots + n^2 + (n+1)^2 \stackrel{?}{=} \displaystyle{\frac{(n+1)\big( (n+1) +1 \big) \big( 2(n+1) +1 \big) }{6}}

Beginning with the left hand side,

\begin{aligned} \textrm{LHS} & = 1^2+2^2+\cdots + n^2 + (n+1)^2 \\ & = P(n) + (n+1)^2 \\ & = \frac{n(n+1)(2n+1)}{6} + (n+1)^2 \\ & = \frac{n(n+1)(2n+1)+6(n+1)^2}{6} \\ & = \frac{(n+1)\big[ (n)(2n+1) + 6(n+1) \big]}{6} \\ & = \frac{(n+1)(2n^2+n+6n+6)}{6} \\ & = \frac{(n+1)(2n^2+7n+6)}{6} \\ & = \frac{(n+1)(2n+3)(n+2)}{6} \\ \end{aligned}

Then turn to the right hand side,

\begin{aligned} \textrm{RHS} & = \frac{(n+1)\big( (n+1) +1 \big) \big( 2(n+1) +1 \big) }{6} \\ & = \frac{(n+1)(n+2)(2n+3)}{6} \\ \end{aligned}

\because \textrm{LHS} = \textrm{RHS}

\therefore P(n+1) holds when P(n) holds.

As is proven P(1) is true, by the principle of mathematical induction, P(n) is also true for n\geqslant 1, i.e.,

\forall\, n\in\mathbb{N},\qquad 1^2+2^2+\cdots +n^2=\displaystyle{\frac{n(n+1)(2n+1)}{6}}

202009281158 Logic the Basics

Notation and notion

\begin{array}{ccc}  \hline  \textrm{\textbf{Statement connective}} & \qquad \qquad & \textrm{\textbf{Abbreviation}} \\  \hline \\  \textrm{\small{AND}} & & \wedge \\  \textrm{\small{OR}} & & \vee \\  \textrm{\small{IMPLIES}} & & \Rightarrow \\  \textrm{\small{IF AND ONLY IF}} & & \Leftrightarrow \\  \textrm{\small{IT IS NOT THE CASE}} & & \neg \\  \end{array}

\begin{array}{ccc}  \hline  & \qquad\qquad & \textrm{\textbf{Parenthesized expressions}} \\  \hline \\  (\textrm{\textbf{highest precedence}}) & & \textrm{\small{NOT}}\enspace (\neg ) \\  & & \textrm{\small{AND}}\enspace (\wedge )\textrm{,\,} \textrm{\small{OR}}\enspace (\vee ) \\  & & \textrm{\small{IMPLIES}}\enspace (\Rightarrow ) \\  (\textrm{\textbf{lowest precedence}}) & &\textrm{\small{IF AND ONLY IF}} \enspace (\Leftrightarrow ) \\  \end{array}


Truth tables

\begin{array}{c|c|c|c|c|c}  \hline  & & \textrm{\textbf{\scriptsize{AND}}} & & & \textrm{\textbf{\scriptsize{OR}}}  \\  \hline  P & Q & P\wedge Q & P & Q & P\vee Q \\  \hline  \textrm{T} & \textrm{T} & \textrm{T} & \textrm{T} & \textrm{T} & \textrm{T} \\  \textrm{T} & \textrm{F} & \textrm{F} & \textrm{T} & \textrm{F} & \textrm{T} \\  \textrm{F} & \textrm{T} & \textrm{F} & \textrm{F} & \textrm{T} & \textrm{T} \\  \textrm{F} & \textrm{F} & \textrm{F} & \textrm{F} & \textrm{F} & \textrm{F} \\  \end{array}

\begin{array}{c|c|c|c|c}  \hline  & \textrm{\textbf{\scriptsize{NOT}}} & & & \textrm{\textbf{\scriptsize{IMPLIES}}}  \\  \hline  P & \neg P & P & Q & P\Rightarrow Q \\  \hline  \textrm{T} &  \textrm{F} & \textrm{T} & \textrm{T} & \textrm{T} \\  \textrm{F} &  \textrm{T} & \textrm{T} & \textrm{F} & \textrm{F} \\  &  & \textrm{F} & \textrm{T} & \textrm{T} \\  &   & \textrm{F} & \textrm{F} & \textrm{T} \\  \end{array}

\begin{array}{c|c|c|c|c|c}  \hline  & & \textrm{\textbf{\scriptsize{IF AND ONLY IF}}} & & & \textrm{\textbf{\scriptsize{EXCLUSIVE-OR}}}  \\  \hline  P & Q & P\Leftrightarrow Q & P & Q & P\veebar Q \\  \hline  \textrm{T} & \textrm{T} & \textrm{T} & \textrm{T} & \textrm{T} & \textrm{F} \\  \textrm{T} & \textrm{F} & \textrm{F} & \textrm{T} & \textrm{F} & \textrm{T} \\  \textrm{F} & \textrm{T} & \textrm{F} & \textrm{F} & \textrm{T} & \textrm{T} \\  \textrm{F} & \textrm{F} & \textrm{T} & \textrm{F} & \textrm{F} & \textrm{F} \\  \end{array}

\begin{array}{c|c|c|c|c|c}  \hline  & & \textrm{\textbf{\scriptsize{NOR}}} & & & \textrm{\textbf{\scriptsize{NAND}}}  \\  \hline  P & Q & P\downarrow Q & P & Q & P\uparrow Q \\  \hline  \textrm{T} & \textrm{T} & \textrm{F} & \textrm{T} & \textrm{T} & \textrm{F} \\  \textrm{T} & \textrm{F} & \textrm{F} & \textrm{T} & \textrm{F} & \textrm{T} \\  \textrm{F} & \textrm{T} & \textrm{F} & \textrm{F} & \textrm{T} & \textrm{T} \\  \textrm{F} & \textrm{F} & \textrm{T} & \textrm{F} & \textrm{F} & \textrm{T} \\  \end{array}


Logical equivalence

a. (rule of double negation)

\neg\neg\, P\equiv P

b. (or-form of an implication)

P\Rightarrow Q\equiv \neg\, P\vee Q

c. (contrapositive of an implication)

P\Rightarrow Q\equiv \neg\, Q\Rightarrow \neg\, P

d. (de Morgan’s laws)

\neg\, (P\vee Q) \equiv \neg\, P\wedge \neg\, Q;

\neg\, (P\wedge Q)\equiv \neg\, P\vee \neg\, Q

e. (rule for direct proof)

(P\wedge R\Rightarrow Q)\equiv (R\Rightarrow (P\Rightarrow Q))

f. (rule for proof by contradiction)

(P\wedge \neg\, Q\Rightarrow O) \equiv (P\Rightarrow Q)

g. (rule for proof by cases)

(P\vee R\Rightarrow Q) \equiv \big[ (P\Rightarrow Q)\wedge (R\Rightarrow Q)\big]


Boolean laws of logic

\begin{array}{cc}  \textrm{1a} \qquad & P\vee Q \equiv Q\vee P \\  \textrm{1b} \qquad & P\wedge Q\equiv Q\wedge P\\  \textrm{2a} \qquad & (P\vee Q)\vee R \equiv P\vee (Q\vee R)\\  \textrm{2b} \qquad & (P\wedge Q) \wedge R \equiv P\wedge (Q\wedge R) \\  \textrm{3a} \qquad & P\vee (Q\wedge R) \equiv (P\vee Q)\wedge (P\vee R) \\  \textrm{3b} \qquad & P\wedge (Q\vee R) \equiv (P\wedge Q)\vee(P\wedge R) \\  \textrm{4a} \qquad & P\vee O \equiv P \\  \textrm{4b} \qquad & P\wedge I\equiv P \\  \textrm{5a} \qquad & P\vee \neg\, P \equiv I\\  \textrm{5b} \qquad & P\wedge \neg\, P \equiv O \\  \end{array}

(1a) and (1b) are known as communicative laws, (2a) and (2b) as associate laws, and (3a) and (3b) as distributive laws.

Predicate validity

\begin{array}{cc}  \textrm{Q1} \qquad & \exists\, y\,\forall\, x\enspace P(x,y) \Leftrightarrow \forall\, x\,\exists\, y\enspace P(x,y)   \\  \textrm{Q2} \qquad & \neg\,\forall\, x\enspace P(x) \Leftrightarrow \exists\, x\enspace \neg\, P(x) \\  \textrm{Q3} \qquad &\neg\,\exists\, x\enspace P(x) \Leftrightarrow \forall\, x\enspace \neg\, P(x) \\  \end{array}


Boolean laws for set theory

\begin{array}{cccc}  & \textrm{Union} & & \textrm{Intersection} \\  \textrm{S1a} & \quad A\cup B = B\cup A & \textrm{S1b} &\quad A\cap B=B\cap A \\  \textrm{S2a} & \quad (A\cup B)\cup C = A\cup (B\cup C) & \textrm{S2b} & \quad (A\cap B)\cap C=A\cap (B\cap C) \\  \textrm{S3a} & \quad A\cup (B\cap C) = (A\cup B)\cap (A\cup C) & \textrm{S3b} & \quad A\cap(B\cup C) = (A\cap B) \cup (A\cap C)\\  \textrm{S4a} & \quad A\cup \emptyset =A & \textrm{S4b} & \quad A\cap \mathrm{U}=A \\  \textrm{S5a} & \quad A\cup A' = \mathrm{U} & \textrm{S5b} & \quad A\cap A' = \emptyset \\  \textrm{S6a} & \quad A\cup \mathrm{U} = \mathrm{U} & \textrm{S6b} & \quad A\cap \emptyset = \emptyset \\  \textrm{S7a} & \quad A\cup A = A & \textrm{S7b} & \quad A\cap A =A \\  \textrm{S8a} & \quad \mathrm{U}' = \emptyset & \textrm{S8b} & \quad \emptyset' = \mathrm{U} \\  \textrm{S9a} & \quad (A')' = A & & \\  \textrm{S10a} & \quad (A\cup B)' = A' \cap B' & \textrm{S10b} &\quad  (A\cap B)' = A' \cup B' \\  \textrm{S11a} & \quad A\cap (A\cup B) = A & \textrm{S11b} &\quad A\cup (A\cap B) = A \\  \textrm{S12a} & \quad A\subseteq A\cup B  & \textrm{S12b} & \quad A\cap B\subseteq B \\  \textrm{S13} & \quad A\subseteq B\Leftrightarrow B'\subseteq A' & & \\  \textrm{S14} & \quad A\subseteq B \Leftrightarrow A'\cup B = \mathrm{U} & & \\  \textrm{S15} & \quad A\subseteq B \Leftrightarrow A\cap B' = \emptyset & & \\  \textrm{S16} & \quad A\subseteq B\Leftrightarrow A\cup B & & \\  \textrm{S17} & \quad A\subseteq B\Leftrightarrow A\cap B = A & & \\  \textrm{S18} & \quad A\subseteq B\,\wedge\, B\subseteq D \Rightarrow A\subseteq D & & \\  \end{array}

Remarks. Statements (S1a) and (S1b) are called the commutative laws; (S2a) and (S2b) the associative laws; (S3a) and (S3b) the distributive laws; (S4a) and (S4b) the identity laws; (S5a) and (S5b) the complement laws; (S7a) and (S7b) the idempotent laws; (S8a) and (S8b) the universal/empty set complement law; (S10a) and (S10b) the De Morgan's laws; (S11a) and (S11b) the absorption laws; and (S18) the transitive law.

202009272336 Homework 1 (Q3)

Verify the following statements by definition of limit.

[Hint: Use the (\epsilon ,\,\delta )-language.]

i. \displaystyle{\lim_{n\to \infty}\frac{2n^2-1}{4n^2+2}=\frac{1}{2}};

ii. \displaystyle{\lim_{n\to \infty}\frac{\sqrt{n^2+n}}{n}=1};

iii. \displaystyle{\lim_{n\to \infty}\sqrt[n]{n+2}=1}.


Verification.

i. Given

\displaystyle{\lim_{n\to \infty}\frac{2n^2-1}{4n^2+2}=\frac{1}{2}},

or,

\displaystyle{\lim_{n\to \infty}f(n)=\frac{1}{2}},

in which

\displaystyle{f(n)=\frac{2n^2-1}{4n^2+2}}.

Informally speaking of it, the function f(n) shall go to the limit 1/2 if its variable n goes to the (+\textrm{ve}) infinity.

Remark.

In other words, if a function f tends to its limit L, by that it is to say, there exists some output value(s) f(x) sufficiently close to the number L.

Make-up arguments.

\begin{aligned} & \quad\enspace \bigg| \frac{2n^2-1}{4n^2+2} - \frac{1}{2} \bigg| \\ & = \bigg| \frac{(2n^2-1)-(2n^2+1)}{4n^2+2} \bigg| \\ & = \bigg| \frac{-2}{4n^2+2}\bigg| \\ & = \frac{1}{2n^2+1} \qquad\qquad \big( < \frac{1}{2n^2} \big) \\ \end{aligned}

As needs

\big| f(n)-L\big| = \displaystyle{\frac{1}{2n^2+1}} < \epsilon,

so let

\begin{aligned} \epsilon & = \frac{1}{2n^2} \\ n & = \frac{\sqrt{2}}{2\sqrt{\epsilon}} \\ \end{aligned}

Roughwork. (Instructive)

\forall\, \epsilon >0,

\exists\, n>N(\epsilon )=\displaystyle{\frac{\sqrt{2}}{2\sqrt{\epsilon}}} s.t.

\begin{aligned} & \quad\enspace \bigg| \frac{2n^2-1}{4n^2+2} - \frac{1}{2} \bigg| \\ & = \frac{1}{2n^2+1} \\ & < \frac{1}{2n^2} \\ & < \frac{1}{2(\frac{\sqrt{2}}{2\sqrt{\epsilon}})^2} \\ & = \epsilon \\ \end{aligned}

(to be continued)


Definition. (Limit) Let f be a real-valued function defined on a subset D of the real numbers \mathbb{R}. Let c be a limit point of D and let L be a real number. Symbolically:

\begin{aligned} & \qquad\enspace \lim_{x\to c} f(x) = L \\ & \Longleftrightarrow \bigg( \forall\, \epsilon >0,\, \exists\, \delta >0,\, \forall\, x\in D, 0<|x-c|<\delta \Rightarrow \big| f(x)-L \big| < \epsilon \bigg) \\ \end{aligned}

Wikipedia on (\epsilon ,\,\delta )-definition of limit


(continue)

The presentation below is based on the Suggested Solution:

First,

\bigg| \displaystyle{\frac{2n^2-1}{4n^2+2}-\frac{1}{2}}\bigg| = \bigg| \frac{1}{2n^2+1}\bigg| <\bigg| \frac{1}{n^2} \bigg|.

Then, just do let

N=N(\epsilon )=\bigg[ \displaystyle{\frac{1}{\sqrt{\epsilon}}} \bigg] +1.

Lastly, \forall\, \epsilon >0, it stands that

\bigg| \displaystyle{\frac{2n^2-1}{4n^2+2}-\frac{1}{2}}\bigg| <\epsilon

whenever n\ge N.

QED


Part ii. and part iii. are noteworthy exercises that have yet to be done.

202009270104 Homework 1 (Q1)

i. Prove that \sqrt{6} is irrational; and

ii. Determine whether \sqrt{2}+\sqrt{3} is rational or not.


Solution.

i. Assume on the contrary that \sqrt{6} be rational, may I rewrite it in terms of a quotient (or a fraction) where the numerator and the nonzero denominator are a pair of coprime integers.

I.e., \sqrt{6}=\displaystyle{\frac{p}{q}} where p,q \in\mathbb{Z} and (p,q)=1.


Roughwork.

\begin{aligned} \sqrt{6} & = \frac{p}{q} \\ 6 & = \frac{p^2}{q^2} \\ p^2 & = 6q^2 \\ & = 2(3q^2) \\ \therefore \qquad 2\big| p^2 & \Rightarrow 2\big| p \textrm{\qquad(why?)} \\ \end{aligned}


From p^2=6q^2 we have 2\big| p.

So let p=2r for some integer r.


Roughwork.

\begin{aligned} (2r)^2 & = 6q^2 \qquad\qquad (\exists\, r\in\mathbb{Z}) \\ 4r^2 & = 6q ^2 \\ 3q^2 & = 2r^2 \\ 2\big| 3q^2 & \stackrel{\textrm{why?}}{\Longrightarrow} 2\big| q^2 \\ & \Rightarrow 2\big| q \\ \end{aligned}


We have also seen 2\big| q.

If and when both statements 2\big| p and 2\big| q meet, it implies p and q are no more coprime, and thus a contradiction.

Definition. (Coprime) Two integers a and b are said to be coprime if the only positive integer that divides them both is one. Equivalently speaking, the greatest common divisor (gcd) of a and b is 1,i.e., \textrm{gcd}(a,b)=1, or written simply, (a,b)=1. Synonymous with coprime' are relatively prime’, `mutually prime’, and the like.

ii.

To prove or disprove from scratch, assume that \sqrt{2}+\sqrt{3} be rational, and see what happens. Let

\sqrt{2}+\sqrt{3}=\displaystyle{\frac{p}{q}}

for some coprimes p,\, q\in\mathbb{Z} s.t. (p,q)=1.

\begin{aligned} \sqrt{3} & = \frac{p}{q} - \sqrt{2} \\ 3 & = \frac{p^2}{q^2} - 2\bigg(\frac{p}{q}\bigg)(\sqrt{2}) +2 \\ 2(\sqrt{2})\bigg(\frac{p}{q}\bigg) & = \frac{p^2}{q^2} - 1 = \frac{p^2-q^2}{q^2} \\ \sqrt{2} & = \frac{p^2-q^2}{2pq} \\ \sqrt{2} & = \frac{p}{2q} - \frac{q}{2p} \in \mathbb{Q} \\ \textrm{As is proven,\enspace} & \sqrt{2}\in \mathbb{R}\backslash\mathbb{Q} \\ \end{aligned}

Contradiction arises ( \Rightarrow \Leftarrow ).

\therefore \sqrt{2}+\sqrt{3} is irrational.

(to be continued)


(doing another way around)

To make use of part i., one might find the Lemma below useful:


Lemma. The product of any two rational numbers is again one rational number.

Proof. Let \displaystyle{\frac{a}{b}} and \displaystyle{\frac{c}{d}}
be rational numbers in their simplest forms reducible.
\begin{aligned} \bigg( \frac{a}{b}\bigg) \bigg( \frac{c}{d}\bigg) & = \bigg( \frac{ac}{bd}\bigg) \\ \because \quad a,b,c,d\in\mathbb{Z} & \Rightarrow ac,\, bd\in\mathbb{Z}\\ \therefore \bigg( \frac{a}{b}\bigg) , \bigg( \frac{c}{d}\bigg) \in \mathbb{Q} & \Rightarrow \bigg( \frac{ac}{bd}\bigg) \in \mathbb{Q} \\ \end{aligned}


If \sqrt{2}+\sqrt{3} were rational, again were its square rational in view of the aforementioned Lemma. Just make an experiment in so doing:

\begin{aligned} (\sqrt{2}+\sqrt{3})^2 & = (\sqrt{2})^2 + 2(\sqrt{2})(\sqrt{3}) + (\sqrt{3})^2 \\ & = 5 + 2\sqrt{6} \\ \end{aligned}

On logic,

\begin{aligned} & \quad (\sqrt{2}+\sqrt{3})^2 \textrm{\quad is rational} \\ & \Rightarrow 5+2\sqrt{6} \textrm{\quad is rational} \\ & \stackrel{\textrm{why?}}{\Longrightarrow} \sqrt{6} \textrm{\quad is rational} \\ \end{aligned}

However, as shown in part i., \sqrt{6} is irrational. The assumption that \sqrt{2}+\sqrt{3} be rational has been contradicted.

The contrary is true that \sqrt{2}+\sqrt{3} is \textrm{\scriptsize{NOT}} rational.

202009260344 Exercise 2.5.1

Show that x=e^{2\theta}\sin\theta satisfies the equation x''-4x'+5x=0.


Solution.

(bottom-up)

Let x' denote \displaystyle{\frac{\mathrm{d}x}{\mathrm{d}\theta}}, x'' denote \displaystyle{\frac{\mathrm{d}^2x}{\mathrm{d}\theta^2}}.

\begin{aligned} x' & = \frac{\mathrm{d}}{\mathrm{d}\theta} \big( e^{2\theta} \sin\theta  \big) \\ & = e^{2\theta} \cdot \frac{\mathrm{d}}{\mathrm{d}\theta} \big( \sin\theta  \big) + \sin\theta \cdot \frac{\mathrm{d}}{\mathrm{d}\theta} \big( e^{2\theta} \big) \\ & = e^{2\theta} \cos\theta + 2e^{2\theta}\sin\theta \\ & = e^{2\theta}(\cos\theta + 2\sin\theta ) \\ \end{aligned}

\begin{aligned} x'' & = \frac{\mathrm{d}}{\mathrm{d}\theta} \big( x'  \big) \\ & = e^{2\theta} \cdot \frac{\mathrm{d}}{\mathrm{d}\theta} (\cos\theta +2\sin\theta ) + (\cos\theta + 2\sin\theta )\cdot \frac{\mathrm{d}}{\mathrm{d}\theta} \big( e^{2\theta} \big) \\ & = (e^{2\theta})(-\sin\theta + 2\cos\theta ) + (\cos\theta + 2\sin\theta )(2e^{2\theta }) \\ & = e^{2\theta}(3\sin\theta + 4 \cos\theta ) \\ \end{aligned}

To know whether or not x=e^{2\theta}\sin\theta is a solution, I simply do substitution in the equation x''-4x'+5x=0.

\begin{aligned} \textrm{LHS} & = x''-4x'+5x \\ & = e^{2\theta}(3\sin\theta +4\cos\theta )-4\big[ e^{2\theta}(\cos\theta +2\sin\theta )\big] + 5\big(e^{2\theta}\sin\theta \big) \\ & = \dots \\ & = 0 \\ & = \textrm{RHS} \\ \end{aligned}


Revision.

(top-down)

We are given a second-order linear homogeneous ordinary differential equation (ODE):

x''-4x'+5x = 0

with some independent variable \theta and some dependent variable x(\theta )=e^{2\theta }\sin\theta, the coefficients of x'', x', and x being constants 1, -4, and 5.

Let the primed [ *]' be the function derived wrt. to \theta. Following the routine procedures,

\begin{aligned} x & = e^{r\theta} \\ x' & = re^{r\theta }\\ x'' & = r\cdot ( e^{r\theta })' + r' \cdot ( e^{r\theta }) \\ & = r^2e^{r\theta} \end{aligned}

rewrite it,

\begin{aligned} x''-4x'+5x & = 0 \\ r^2e^{r\theta} - 4re^{r\theta} + 5e^{r\theta} & = 0 \\ \dots  \textrm{\quad excepting\quad} & x=e^{r\theta}=0\textrm{\quad \dots} \\ r^2 -4r+5 & = 0 \\ \end{aligned}

and we shall obtain the auxiliary equation (aka. the characteristic equation) on the very last line.

r=\displaystyle{\frac{-(-4)\pm\sqrt{(-4)^2-4(1)(5)}}{2(1)}}=2\pm \textrm{i}.


Note.

If the roots of the auxiliary equation ar^2+br+c=0 are the complex numbers r_1=\alpha +\textrm{i}\beta and r_2=\alpha -\textrm{i}\beta, the general solution of ay''+by'+cy=0 is

y=e^{\alpha x}(c_1\cos\beta x+c_2\sin\beta x)

(please refer to J. Stewart’s Calculus, Second-Order Linear Differential Equations)


Now that r_1=2+\textrm{i} and r_2=2-\textrm{i} and c_1, c_2 are arbitrary constants, to this 2^{\textrm{nd}}-order ODE, the general solution is

x=e^{2\theta}(c_1\cos\theta +c_2\sin\theta ).


Examination.

It is a good practice, no matter how much time one would allow oneself, to countercheck one’s solution…

Here it goes,

\begin{aligned} x & =e^{2\theta}(c_1\cos\theta +c_2\sin\theta )  \\ & = (c_2e^{2\theta })(\sin\theta ) + (c_1e^{2\theta })(\cos\theta ) \\ \end{aligned}.

\begin{aligned} x' & = e^{2\theta}(-c_1\sin\theta +c_2\cos\theta ) + 2e^{2\theta}(c_1\cos\theta +c_2\sin\theta ) \\ & = (2c_2e^{2\theta }-c_1e^{2\theta})(\sin\theta ) + (2c_1e^{2\theta} + c_2e^{2\theta} )(\cos\theta ) \\ \end{aligned}

\begin{aligned} x''& = \big[ (2c_2e^{2\theta }-c_1e^{2\theta})(\sin\theta ) \big]' + \big[ (2c_1e^{2\theta} + c_2e^{2\theta} )(\cos\theta ) \big]' \\ & = \big[ (2c_2e^{2\theta}-c_1e^{2\theta })(\cos\theta )+(4c_2e^{2\theta }-2c_1e^{2\theta })(\sin\theta ) \big] \\ & \qquad\quad + \big[ (2c_1e^{2\theta }+c_2e^{2\theta })(-\sin\theta )+(4c_1e^{2\theta }+2c_2e^{2\theta })(\cos\theta ) \big] \\ & = (-4c_1e^{2\theta }+3c_2e^{2\theta })(\sin\theta ) + (3c_1e^{2\theta }+4c_2e^{2\theta })(\cos\theta ) \\ \end{aligned}

Then,

\begin{aligned} \textrm{LHS} & =  x'' - 4x' + 5x \\ & = \big( (-4c_1e^{2\theta }+3c_2e^{2\theta })-4(2c_2e^{2\theta}-c_1e^{2\theta})+5c_2e^{2\theta}\big)(\sin\theta ) \\ & \qquad\quad + \big( (3c_1e^{2\theta}+4c_2e^{2\theta}) - 4(2c_1e^{2\theta}+c_2e^{2\theta})+5c_1e^{2\theta} \big)(\cos\theta ) \\ & = 0 \\ & = \textrm{RHS} \end{aligned}


In conclusion, x=e^{2\theta}\sin\theta is a particular solution, the general solution being x=e^{2\theta}(c_1\cos\theta +c_2\sin\theta ).

202009251201 Homework 1 (Q1)

Solve the system \mathbf{A}\mathbf{x} = \mathbf{0} for each matrix \mathbf{A} below.

(a)

\mathbf{A}= \begin{bmatrix}  1 & 3 & 5 & 7 \\ 3 & 5 & 7 & 9 \\ 5 & 7 & 9 & 1 \\  \end{bmatrix}

(b)

\mathbf{A}= \begin{bmatrix}  1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & -2 & 0 \\  \end{bmatrix}

(c)

\mathbf{A}= \begin{bmatrix}  4 & 6 & 0 & 1 & -9 \\ 1 & 2 & -4 & 5 & 7 \\ 2 & 3 & 6 & 4 & 2 \\ 1 & 0 & 3 & 2 & -5 \\  \end{bmatrix}

(d)

\mathbf{A}= \begin{bmatrix}  1 & 2 & 3 & 1 & 1 \\ 1 & 4 & 0 & 1 & 2 \\ 0 & 2 & -3 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\  \end{bmatrix}


Recall

Observe that \mathbf{A}‘s in (a) and (b) are 3-by-4 matrices, and in (c) and (d) are 4-by-5 matrices. Multiplication of two matrices \mathbf{A} and \mathbf{B} results in a matrix product \mathbf{A}\mathbf{B}. By convention, should an m-by-n matrix \mathbf{A} be written on the left, \mathbf{A} is meant the multiplicand, and should an n-by-p matrix \mathbf{B} be written on the right, \mathbf{B} is meant the multiplier. The matrix product \mathbf{AB} will become an m-by-p matrix.


Solution.

(a)

Let a 4-by-1 column vector \mathbf{x} be

\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}.

Then,

\begin{aligned} \mathbf{A}\mathbf{x} & = \mathbf{0} \\ \begin{bmatrix} 1 & 3 & 5 & 7 \\ 3 & 5 & 7 & 9 \\ 5 & 7 & 9 & 1 \\ \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ \end{bmatrix} & = \mathbf{0} \\ \begin{bmatrix} (1)(x_1)+(3)(x_2)+(5)(x_3)+(7)(x_4) \\ (3)(x_1)+(5)(x_2)+(7)(x_3)+(9)(x_4) \\ (5)(x_1)+(7)(x_2)+(9)(x_3)+(1)(x_4) \\ \end{bmatrix} & = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \end{bmatrix} \end{aligned}

Here we have four unknowns but three equations.

\begin{Bmatrix} 15x_1+ 45x_2+75x_3+105x_4 & = 0 \\ 15x_1+25x_2+35x_3+45x_4 & = 0 \\ 15x_1+21x_2+27x_3+3x_4 & = 0 \\ \end{Bmatrix}

It is feasible to carry through all the calculations, but do let us not work in so awkward a manner.

Performing row operations of matrices and using shorthand notations (e.g., R_1 stands for Row 1; 5R_2 stands for 5 times each entry in Row 2; R_1-R_3 means every entry in Row 3 is to be subtracted from the corresponding entry in Row 1.)

(1) R_3-5R_1

\begin{bmatrix}  1 & 3 & 5 & 7 \\ 3 & 5 & 7 & 9 \\ 0 & -8 & -16 & -34 \\  \end{bmatrix}

(2) R_2 - 3R_1

\begin{bmatrix}  1 & 3 & 5 & 7 \\ 0 & -4 & -8 & 12 \\ 0 & -8 & -16 & -34 \\  \end{bmatrix}

(3) R_3 - 2R_2

\begin{bmatrix}  1 & 3 & 5 & 7 \\ 0 & -4 & -8 & 12 \\ 0 & 0 & 0 & -58 \\  \end{bmatrix}

(4) R_3 \div (-58)

\begin{bmatrix}  1 & 3 & 5 & 7 \\ 0 & -4 & -8 & 12 \\ 0 & 0 & 0 & 1 \\  \end{bmatrix}

(5) R_2-12R_3

\begin{bmatrix}  1 & 3 & 5 & 7 \\ 0 & -4 & -8 & 0 \\ 0 & 0 & 0 & 1 \\  \end{bmatrix}

(6) R_1-7R_3

\begin{bmatrix}  1 & 3 & 5 & 0 \\ 0 & -4 & -8 & 0 \\ 0 & 0 & 0 & 1 \\  \end{bmatrix}

(7) R_2 \div (-4)

\begin{bmatrix}  1 & 3 & 5 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \\  \end{bmatrix}

(8) R_1-3R_2

\begin{bmatrix}  1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \\  \end{bmatrix}

The matrix above is called the reduced row-echelon form of \mathbf{A}.

Now that the simplification has come handy:

\begin{aligned} x_1 -x_3 &=0 \\ x_2 +2x_3 & = 0 \\ x_4 & = 0 \\ \end{aligned}

and the answer is \mathbf{x}=\begin{bmatrix} x \\ -2x \\ x \\ 0 \end{bmatrix}.


Questions (b), (c), and (d) are left the readers.

202009250041 Exercise 5.8.1

Find out if any the asymptote(s) of the curve given by:

y=\displaystyle{\frac{x^2-6x+3}{x-3}}.


Attempts.

\begin{aligned} & & x & -3 & &  \\\cline{3-5} x & -3 \Big) & x^2 & -6x & +3 & \\ & & x^2 & -3x & & \\ \cline{3-5} & & & -3x & +3 \\ & & & -3x & +9 \\\cline{4-5} & & & & -6 \end{aligned}

The curve is given by

\begin{aligned} y & =\displaystyle{\frac{x^2-6x+3}{x-3}} \\ & = x-3 - \displaystyle{\frac{6}{x-3}} \end{aligned}.


Ans. Of the given curve, x=3 is a vertical asymptote and y=x-3 an oblique asymptote.


Retrospectively, for f(x)=\displaystyle{\frac{x^2-6x+3}{x-3}}, maybe one could also have checked the conditions as follow:

i. \displaystyle{\lim_{x\to 0}}f(x);

ii. \displaystyle{\lim_{x\to 3^{+}}}f(x);

iii. \displaystyle{\lim_{x\to 3^{-}}}f(x);

iv. \displaystyle{\lim_{x\to +\infty}}f(x); and

iv. \displaystyle{\lim_{x\to -\infty}}f(x).


i.

\begin{aligned} \lim_{x\to 0}f(x) & = \lim_{x\to 0} \frac{x^2-6x+3}{x-3} \\ & = \frac{(0)^2-6(0)+3}{(0)-3} \\ & = -1 \end{aligned}

iii.

\begin{aligned} \lim_{x\to 3^{-}}f(x) & = \lim_{x\to 3^{-}} \frac{x^2-6x+3}{x-3} \\ & = \lim_{x\to 3^{-}} \bigg(  x-3-\frac{6}{x-3} \bigg) \\ & = 3^{-} -3-\frac{6}{3^{-}-3} \\ & = (3^{-}-3) + \bigg( \frac{6}{3-3^{-}} \bigg) \\ & \\ \hline & \\ & \because 3^{-} < 3 \\ & \therefore 3^{-}-3<0\qquad \textrm{and}\qquad 3-3^{-}>0 \\ & \dots \textrm{excuse me for writing with no more ado,}\dots \\ & \\ \hline & \\ & = 0^{-} + \frac{6}{0^{+}} \\ & = +\infty \\ \end{aligned}

ii., iv., and iv. are not checked.


Just work with it like whom I was taught:

First, find the slope of tangent to the curve,

\begin{aligned} f(x) & = \frac{x^2-6x+3}{x-3} \\ f'(x) & = \frac{\mathrm{d}}{\mathrm{d}x}\big( f(x) \big) \\ & = \frac{(x-3)(2x-6)-(x^2-6x+3)(1)}{(x-3)^2}  \\ & = \frac{(2x^2-12x+18)-(x^2-6x+3)}{(x-3)^2} \\ & = \frac{x^2-6x+15}{x^2-6x+9} \\ & = 1 + \frac{6}{x^2-6x+9} \end{aligned}

The purpose is to find out any crests or troughs, because at the tip or bottom of a plotted curve, the slope of tangent will be zero, i.e., f'(x)=0.

Secondly, find the change of slope of tangent to the curve,

\begin{aligned} f''(x) & = \frac{\mathrm{d}}{\mathrm{d}x}\big[ f'(x) \big] \\ & = \frac{\mathrm{d}}{\mathrm{d}x} \bigg( 1+\frac{6}{x^2-6x+9}  \bigg) \\ & = \frac{\mathrm{d}}{\mathrm{d}x} \big( 1 \big) + \frac{\mathrm{d}}{\mathrm{d}x} \bigg(  \frac{6}{x^2-6x+9} \bigg) \\ & = 0 + \frac{(x^2-6x+9)(0)+(6)(2x-6)}{(x^2-6x+9)^2} \\ & = \frac{12x-36}{(x^2-6x+9)^2} \\ \end{aligned}

The purpose is to find out if there were any inflexion points (i.e., f''(x)=0) upon which curvature changes sign.


It begins, assuming x\neq 3, I will set f(x)=0:

\begin{aligned} f(x) & = 0 \\ \Leftrightarrow \qquad\qquad x^2-6x+3 & = 0 \\ x & = \frac{-(-6)\pm \sqrt{(-6)^2-4(1)(3)}}{2(1)} \\ & = 3 \pm \sqrt{6} \\ \end{aligned}

The x-intercepts are thus two, 3+\sqrt{6} and 3-\sqrt{6} .

Then I needs set f'(x)=0 with the same assumption x\neq 3.

\begin{aligned} f'(x) & = 0 \\ \Leftrightarrow \qquad \qquad 1+\frac{6}{x^2-6x+9} & = 0 \\ & \\ \textrm{\dots \quad by assumption }x\neq 3 & \enspace \textrm{jump legitimately to the next step\quad \dots} \\ & \\ x^2-6x+9+6 & = 0 \\ x^2 -6x +15 & = 0 \\ x & = \frac{-(-6)\pm \sqrt{(-6)^2-4(1)(15)}}{2(1)} \\ & = 3 \pm \sqrt{6}\, \textrm{i} \end{aligned}

As curvature here permits of no nonreal points, there are neither convex point(s) nor concave point(s).

Besides, there are none any one point of inflexion because if on one hand f''(x)=0 and on the other x\neq 3 be assumed,

\begin{aligned} \frac{12x-36}{(x^2-6x+9)^2} & = 0 \\ \Rightarrow 12x-36 & = 0 \\ \Rightarrow x & =3\qquad\qquad\qquad \bot \\ \end{aligned}

it would have resulted in contradiction.


In conclusion, this exercise was overdone.

202009240421 Problem 2.1.1

For x,\, y\in \mathbb{K} (\mathbb{R} or \mathbb{C}), define

d(x,y)=\mathrm{min}\big\{ 1,\,  |x-y| \big\}.

Prove that d is a metric on \mathbb{K}.


Motivation.

A ruler is marked by rules for the sake of measuring things. Not so much common to a ruler, but well worth the rule for the general, that a metric must measure its metric space, with the metric defined below:

Definition. (metric) Let X be a non-empty set. A function d: X\times X \rightarrow \mathbb{R} is said to be a metric on X if it satisfies the following conditions:

i. d(x,y)\ge 0\qquad \forall\, x,\, y\in X;
ii. d(x,y)=0 \Leftrightarrow x=y\qquad x,\, y\in X;
iii. d(x,y)=d(y,x) \qquad \forall\, x,\, y\in X;
iv. d(x,y)\le  d(x,z)+d(z,y) \qquad \forall\, x,\, y,\, z\in X.


Remark.

i. As is known, distance should be either positive or zero (i.e., non-negative); ii. We are in one only by discrimination; iii. Fair and just from a symmetric point of view; and iv. The straighter the path, the shorter the distance (also known as the Triangle Inequality).


Proof.

Assume x\, ,y\in\mathbb{C} for convenience. (Provided \mathbb{R}\subset \mathbb{C}, the assumption is ready for reduction or extension.)

i.

If the minimum \mathrm{min}\big\{ 1, |x-y|\big\} = 1, condition (i) d(x,y)=1 \ge 0 is seen. If the minimum \mathrm{min}\big\{ 1,|x-y|\big\} = |x-y|, be it called the absolute value, the magnitude, the norm, the modulus, or whatsoever, a complex number is non-negative in norm.


Recall. (Norm of complex conjugate)

A complex number z=x+\textrm{i}\, y contains two parts, the real part x and the imaginary part y. The norm |z| (and the norm |\bar{z}| of its complex conjugate \bar{z}=x-\textrm{i}\, y)
is defined by the formula:

|z|=|x+\textrm{i}\, y|=\sqrt{\big[\textrm{Re}(z)\big]^2+\big[\textrm{Im}(z)\big]^2}=\sqrt{x^2+y^2}.

\dagger It turns out that |z|=\sqrt{(x)^2+(y)^2}=\sqrt{(x)^2+(-y)^2}=|\bar{z}| (where x,\, y\in\mathbb{R}) is positive iff x\enspace\textrm{\scriptsize OR}\enspace y\neq 0, and zero iff x=y=0, but never negative.

\ddagger The sum, the difference, the product, and the quotient of two complex numbers is one another complex number for the complex number field is algebraically closed.


ii.

(only-if) Giving a try straightforth:

\begin{aligned} d(x,y) & = 0 \\ \textrm{min}\big\{ 1, |x-y| \big\} & = 0 \\ |x-y| & = 0\qquad \textrm{\scriptsize OR\qquad\quad } 1 = 0 \qquad \textrm{(rejected for\enspace }1\neq 0) \\ |x-y| & = 0 \\ x-y & = 0 \\ x & = y \end{aligned}

(if) In reverse from backward:

\begin{aligned} x & = y \\ x-y & = 0 \\ |x-y| & = 0 \\ \textrm{min}\big\{ 1, |x-y| \big\} & = 0 \\ d(x,y) & = 0 \end{aligned}

If provided with appropriate explanation, the proof can be shortened by use of the two-way if-and-only-if.

iii.

Suffice it to check whether d(x,y)=d(y,x) is true or not.

\begin{aligned} \textrm{LHS} & = d(x,y) \\ & = \textrm{min}\big\{ 1,\, |x-y| \big\} \\ & = \textrm{min}\big\{ 1,\, |y-x| \big\} \\ & = d(y,x) \\ & = \textrm{RHS} \end{aligned}


Roughwork.

\forall\, x,\,y \in\mathbb{C}, let x=a+\textrm{i}\, b and y=c+\textrm{i}\, d where a, b, c, and d are real numbers. Then,
\begin{aligned} x-y & = (a+\textrm{i}\, b)-(c+\textrm{i}\, d) \\ x-y & = (a-c) + \textrm{i}\, (b-d) \\ |x-y| & = \sqrt{(a-c)^2+(b-d)^2} \\ |x-y| & = \sqrt{(c-a)^2+(d-b)^2} \\ |x-y| & = |(c-a) + \textrm{i}\, (d-b)| \\ |x-y| & = |(c+\textrm{i}\, d) - (a+\textrm{i}\, b)| \\ |x-y| & = |y-x| \\ \end{aligned}


iv.

Given here are some equations, I write out all them lest I might forget any:

d(x,y)=\textrm{min}\big\{ 1, |x-y| \big\},
d(x,z)=\textrm{min}\big\{ 1, |x-z| \big\},
d(z,y)=\textrm{min}\big\{ 1, |z-y| \big\}.

RTP (i.e. required to prove):

d(x,y)\le d(x,z) + d(z,y)

\begin{aligned} \textrm{RHS} & = d(x,z) + d(z,y) \\ & = \textrm{min}\big\{ 1,|x-z|\big\} + \textrm{min}\big\{ 1,|z-y|\big\} \\ & = \textrm{min}\big\{ 2,\, 1+|z-y|,\, 1+|x-z|,\, |x-z|+|z-y|\big\} \\ \end{aligned}

If d(x,y)=\textrm{min}\big\{ 1, |x-y|\big\} \stackrel{?}{=}1, so what have I done with?

WTS (i.e. wish to show):

1\le \textrm{min}\big\{ 2, 1+|z-y|, 1+|x-z|, |x-z|+|z-y|\big\}

The following inequalities hold evidently:

\begin{aligned} 1 & \le 2 \\ 1 & \le 1+|z-y| \\ 1 & \le 1+|x-z| \\ \end{aligned}

But 1\le |x-z|+|z-y| has not yet been ascertained.

The Argand diagram above replaces the usual x– and y-axes of the Cartesian plane with the real and the imaginary axes of Argand plane.

Owing to my giving too raw and rude maybe a proof, the problem should have otherwise been treated case-by-case. I.e., they are in either case:

1\le |x-y| \qquad \qquad \textrm{\scriptsize OR}\qquad\qquad 1> |x-y|


Just do it by rote:

\begin{aligned} & \quad\, d(x,y) \\ & =\textrm{min}\big\{  1, |x-y| \big\} \\ & =\textrm{min}\big\{  1, |x-z+z-y| \big\} \\ \dots \, & \textrm{by the Triangle Inequality}\, \dots \\ & \leqslant \textrm{min} \big\{ 1, |x-z| + |z-y|  \big\}  \\ & \leqslant \textrm{min} \big\{ 1, |x-z| \big\} + \textrm{min} \big\{ 1, |z-y| \big\} \\ & \leqslant d(x,z) + d(z,y) \\ \end{aligned}

d(x,y) \le d(x,z) + d(z,y)

QED