201907260745 Homework 1 (Q1)

Consider a probability density of the Gaussian distribution

|\Psi |^2=\rho (x)=Ae^{-\lambda(x-a)^2}

where A, a, and \lambda are constants.

You probably wish to know \displaystyle{\int_{-\infty}^{+\infty}}e^{-u^2}\mathrm{d}u=\sqrt{\pi}.

  1. Determine A according to the normalizing rules.
  2. Find \langle x\rangle, \langle x^2\rangle, and \sigma, the standard deviation of x.
  3. Sketch the graph of \rho (x).

Solution:

  1. Roughwork.

    \begin{aligned}1 & = \int_{-\infty}^{+\infty} |\Psi |^2 \mathrm{d}x \\1& = \int_{-\infty}^{+\infty} Ae^{-\lambda (x-a)^2}\mathrm{d}x \\\frac{1}{A} & = \int_{-\infty}^{+\infty}  e^{-\big(\lambda^{\frac{1}{2}}(x-a)\big)^2} \mathrm{d}x \\\dots & \Bigg( \because \enspace \frac{\mathrm{d}\big( \lambda^{\frac{1}{2}}(x-a) \big)}{\mathrm{d}x} = \sqrt{\lambda} \Bigg) \dots \\\frac{1}{A} & = \frac{1}{\sqrt{\lambda}} \int_{-\infty}^{+\infty}  e^{-\big(\lambda^{\frac{1}{2}}(x-a)\big)^2} \mathrm{d}\big( \lambda^{\frac{1}{2}}(x-a) \big) \\\frac{1}{A} & =\sqrt{\frac{\pi}{\lambda}} \\A & = \sqrt{\frac{\lambda}{\pi}}\end{aligned}

  2. Recall \langle x\rangle = \displaystyle{\int_{-\infty}^{+\infty}}x\rho (x)\,\mathrm{d}x, Eq. (1.17) in Griffith's Introduction to Quantum Mechanics

    First,

    \begin{aligned} \langle x\rangle & = A\int_{-\infty}^{+\infty} xe^{-\lambda (x-a)^2}\mathrm{d}x \\ & = A\int_{-\infty}^{+\infty} (u+a)e^{-\lambda u^2}\mathrm{d}u \\ & = A \int_{-\infty}^{+\infty} u\,\mathrm{d}u + Aa\int_{-\infty}^{+\infty}e^{-\lambda u^2}\,\mathrm{d}u \\ & = 0+Aa\sqrt{\frac{\pi}{\lambda}} \\ & = a \end{aligned}


    The section below sets a bad example of computation, the second equality sign being wishful thinking, and what follows thence is incorrect.

    \begin{aligned} \langle x^2\rangle & = A\int_{-\infty}^{+\infty} x^2e^{-\lambda (x-a)^2}\mathrm{d}x \\ & = A \int_{-\infty}^{+\infty} x^2e^{-\lambda x^2}\mathrm{d}x + A \int_{-\infty}^{+\infty} x^2e^{2\lambda ax}\mathrm{d}x + A \int_{-\infty}^{+\infty} x^2e^{-\lambda a^2}\mathrm{d}x \end{aligned}
    Recall the formula for integration by parts is \int uv'\mathrm{d}x =uv-\int vu'\mathrm{d}x, or, \displaystyle{\int u\bigg( \frac{\mathrm{d}v}{\mathrm{d}x}\bigg) \mathrm{d}x} =uv-\displaystyle{\int v\bigg( \frac{\mathrm{d}u}{\mathrm{d}x} \bigg) \mathrm{d}x}.

Evaluate term-by-term, the first term is

\begin{aligned} &\quad A\int_{-\infty}^{+\infty} x^2e^{-\lambda x^2}\,\mathrm{d}x\\ & = \frac{A}{2} \int_{-\infty}^{+\infty} xe^{-\lambda x^2}\,\mathrm{d}(x^2) \\ & =\frac{A}{2} \Bigg\{ \bigg[ \frac{-xe^{-\lambda x^2}}{\lambda}\bigg]_{-\infty}^{+\infty} -\int_{-\infty}^{+\infty} \frac{-e^{-\lambda x^2}}{\lambda}\,\mathrm{d}(x^2)  \Bigg\} \\ \dots & \Bigg( \quad \mathrm{d}(\sqrt{\lambda}x^2) = \frac{1}{2\sqrt{\lambda}}\,\mathrm{d}(x^2) \quad \Bigg) \dots \\ & =\frac{A}{2} \Bigg\{ \bigg[ \frac{-xe^{-\lambda x^2}}{\lambda}\bigg]_{-\infty}^{+\infty} +\frac{2\sqrt{\lambda}}{\lambda}\int_{-\infty}^{+\infty}e^{-(\sqrt{\lambda} x)^2} \mathrm{d}(\sqrt{\lambda}x^2) \Bigg\} \\ & = \frac{A}{2} \bigg( 0+2\sqrt{\frac{\pi}{\lambda}}\bigg) \\ & = \frac{\sqrt{\frac{\lambda}{\pi}}}{2} \bigg( 2\sqrt{\frac{\pi}{\lambda}}\bigg) \\ & = 1 \end{aligned}

The terrible blunder ends here.


Correction.

\begin{aligned} \langle x^2 \rangle & = \int_{-\infty}^{+\infty} x^2Ae^{-\lambda (x-a)^2}\mathrm{d}x \\ & = A\int_{-\infty}^{+\infty} (u+a)^2 e^{\lambda u^2}\mathrm{d}u \\ & = A\int_{-\infty}^{+\infty} u^2e^{-\lambda u^2}\mathrm{d}u + 2Aa\int_{-\infty}^{+\infty} ue^{-\lambda u^2}\mathrm{d}u + Aa^2\int_{-\infty}^{+\infty}e^{-\lambda u^2}\mathrm{d}u \end{aligned}

Step back to look closer, the third term is the easiest to compute:

\begin{aligned} & \quad Aa^2\int_{-\infty}^{+\infty}e^{-\lambda u^2}\mathrm{d}u \\ & = \frac{Aa^2}{\sqrt{\lambda}}\int_{-\infty}^{+\infty}e^{-(\sqrt{\lambda}u)^2}\mathrm{d}(\sqrt{\lambda}u) \\ & =Aa^2\sqrt{\frac{\pi}{\lambda}}\\ & = \sqrt{\frac{\lambda}{\pi}} a^2\sqrt{\frac{\pi}{\lambda}}\\ & = a^2 \end{aligned}

The first two terms might need to be evaluated using integration by parts. On the other hand, from the angle of parity, in the second term

2Aa\displaystyle{\int_{-\infty}^{+\infty}} f(u)\,\mathrm{d}u

where f(u)\stackrel{\mathrm{def}}{=}ue^{-\lambda u^2}

f(-u)=(-u)e^{-\lambda(-u)^2}=-f(u)

is an odd function. The definite integral upon evaluation will be nought:

2Aa\displaystyle{\int_{-\infty}^{+\infty}} ue^{-\lambda u^2}\,\mathrm{d}u \equiv 0.

The first term can be checked

A \displaystyle{\int}g(u)\,\mathrm{d}u

where g(u) \stackrel{\mathrm{def}}{=}u^2e^{-\lambda u^2}

that g(-u)=(-u)^2e^{-\lambda (-u)^2}=g(u) is an even function.

Upon evaluation the definite integral will have the property that

A \displaystyle{\int_{-\infty}^{+\infty}}u^2e^{-\lambda u^2}\,\mathrm{d}u = 2A \displaystyle{\int_{0}^{+\infty}}u^2e^{-\lambda u^2}\,\mathrm{d}u,

though it seems not useful here. Doing integration by parts,

\begin{aligned} & \quad A \displaystyle{\int_{-\infty}^{+\infty}}u^2e^{-\lambda u^2}\mathrm{d}u \\ & = \frac{A}{\sqrt{\lambda}} \int_{-\infty}^{+\infty} u^2e^{-(\sqrt{\lambda}u)^2}\mathrm{d}(\sqrt{\lambda}u) \\ & = \frac{A}{\sqrt{\lambda}} \Bigg\{ \bigg[ \frac{u^2e^{-(\sqrt{\lambda}u)^2}}{-2(\sqrt{\lambda}u)} \bigg]\bigg|_{-\infty}^{+\infty} -\int_{-\infty}^{+\infty}  \frac{e^{-(\sqrt{\lambda}u)^2}}{-2(\sqrt{\lambda}u)} \Big( \frac{2u}{\sqrt{\lambda}} \Big) \mathrm{d}(\sqrt{\lambda}u) \Bigg\} \\ & = \frac{A}{\sqrt{\lambda}} \Bigg\{ 0+ \frac{1}{\lambda}\int_{-\infty}^{+\infty}  e^{-(\sqrt{\lambda}u)^2} \mathrm{d}(\sqrt{\lambda}u) \Bigg\} \\ & = A\frac{1}{\sqrt{\lambda}}\frac{1}{\lambda}\sqrt{\pi} \\ & = \sqrt{\frac{\lambda}{\pi}} \frac{1}{\sqrt{\lambda}}\frac{1}{\lambda}\sqrt{\pi} \\ & = \frac{1}{\lambda} \end{aligned}

Thus \langle x^2\rangle = \frac{1}{\lambda} + a^2

As \sigma^2=\langle x^2\rangle -\langle x\rangle^2,

\sigma^2 = \frac{1}{\lambda} + a^2 - a^2 = \frac{1}{\lambda}.

Leave a Reply

Your email address will not be published. Required fields are marked *