201907251758 Solution to 1980-CE-PHY-II-5

The kinetic energy E_\mathrm{k} of an object of mass m and speed v is given by the formula

E_\mathrm{k}=\displaystyle{\frac{1}{2}}mv^2.

In the situation that the object is thrown upwards with initial speed u, and subjected only to gravity \mathbf{g}, it can be expected that after some time of flight T, the object will return to its initial position, its downward speed in which is equal to the initial upward speed u.

Define a piecewise scalar function v(t) of time t:

v(t) = \begin{cases}  u-gt & \quad \textrm{when }0\leq t\leq \displaystyle{\frac{T}{2}} \\  -u+gt & \quad \textrm{when } \displaystyle{\frac{T}{2}}\leq t\leq T \end{cases}

or simply

v:[0,T]\subset \mathbb{R} \rightarrow [0,u]\subset \mathbb{R} given by t\mapsto \big|u-g(T-t)\big|.

Then

\begin{aligned} v^2 & =(u-gt)^2\quad \big( =(-u+gt)^2\big) \\ & = u^2-2ugt+g^2t^2 \quad \big(\forall\, t\in [0,T] \big) \end{aligned}.

Thus the kinetic energy E_\mathrm{k}(t) is

\begin{aligned} E_\mathrm{k}(t) & =\displaystyle{\frac{1}{2}}m(u^2-2ugt+g^2t^2) \\ & = \bigg( \displaystyle{\frac{1}{2}}mg^2 \bigg) t^2 + ( -mug ) t + \bigg( \displaystyle{\frac{1}{2}}mu^2 \bigg) \end{aligned}

where m, u, g are constants.

The kinetic energy E_\mathrm{k}(t) is set to zero at time t':

\begin{aligned} t' & = \displaystyle{\frac{-(-mug)\pm\sqrt{\big( -mug\big)^2-4\big(\frac{1}{2}mg^2\big)\big(\frac{1}{2}mu^2\big)}}{2\big(\frac{1}{2}mg^2\big)}} \\ & = \displaystyle{\frac{mug\pm\sqrt{m^2u^2g^2-m^2u^2g^2}}{mg^2}} \\ & =\displaystyle{\frac{u}{g}} \end{aligned}

Substituting t'=\displaystyle{\frac{u}{g}} for t in v=u-gt:

v=u-g\bigg( \displaystyle{\frac{u}{g}} \bigg) =0,

as checked.

And the answer is B.

Leave a Reply

Your email address will not be published. Required fields are marked *