201907141627 Homework 1 (Q1)

Use the \varepsilon_{ijk} notation and derive the following two identities:

\begin{aligned} \mathbf{A}\times (\mathbf{B}\times \mathbf{C})=(\mathbf{A}\cdot \mathbf{C})\mathbf{B}-(\mathbf{A}\cdot\mathbf{B})\mathbf{C} \end{aligned}\hfill (1)

\begin{aligned} (\mathbf{A}\times\mathbf{B})\times (\mathbf{C}\times\mathbf{D})=(\mathbf{ABD})\mathbf{C}-(\mathbf{ABC})\mathbf{D} \end{aligned}\hfill (2)

where \mathbf{ABC} denotes the triple scalar product (\mathbf{A}\times \mathbf{B})\cdot \mathbf{C}.


Solution.

In attempting the following proof, extensive reference was made to the article found on the Internet (http://www.ucl.ac.uk/~ucappgu/seminars/levi-civita(DOT)pdf):

\begin{aligned} \textrm{LHS} = \mathbf{D}& \stackrel{\textrm{def}}{=} \mathbf{A}\times (\mathbf{B}\times\mathbf{C}) \\ d_m & =\varepsilon_{mni}a_n(\varepsilon_{ijk}b_jc_k)\\ & = \varepsilon_{imn}\varepsilon_{ijk}a_nb_jc_k \\ & = (\delta_{mj}\delta_{nk}-\delta_{mk}\delta_{nj})a_nb_jc_k \\ & = b_ma_kc_k-c_ma_jb_j \\ & = (\mathbf{A}\cdot \mathbf{C})\mathbf{B}-(\mathbf{A}\cdot\mathbf{B})\mathbf{C} \\ & = \textrm{RHS}\\ \end{aligned}

This completes the proof of identity (1).

For identity (2), I can make use of identity (1) by substituting \mathbf{A}\times\mathbf{B} for \mathbf{A}, \mathbf{C} for \mathbf{B}, and \mathbf{D} for \mathbf{C}, and get the following:

\begin{aligned} \textrm{LHS} & = (\mathbf{A}\times\mathbf{B})\times (\mathbf{C}\times\mathbf{D}) \\ & \stackrel{\textrm{(1)}}{=} \big( (\mathbf{A}\times \mathbf{B})\cdot \mathbf{D}\big)\mathbf{C} -\big( (\mathbf{A}\times \mathbf{B})\cdot \mathbf{C}\big)\mathbf{D}\\ & = (\mathbf{ABD})\mathbf{C}-(\mathbf{ABC})\mathbf{D}\qquad\quad \textrm{where}\enspace \mathbf{ABC}\stackrel{\textrm{def}}{=}(\mathbf{A}\times\mathbf{B})\cdot\mathbf{C} \\ & = \textrm{RHS} \\ \end{aligned}

This completes the proof of identity (2).


Improvement on presentation

The i-component of \mathbf{A}\times (\mathbf{B}\times\mathbf{C}) is:

\begin{aligned} & \quad [\mathbf{A} \times (\mathbf{B} \times \mathbf{C})]_i \\ & = \sum_{jk}\epsilon_{ijk}A_j(\mathbf{B}\times\mathbf{C})_k \\ & = \sum_{jk}\epsilon_{ijk}A_j\sum_{lm}\epsilon_{klm}B_lC_m \\ & = \sum_{jk}\sum_{lm}\epsilon_{ijk}\epsilon_{klm}A_jB_lC_m \\ \dots\, &\textrm{ by } \sum_k \epsilon_{ijk}\epsilon_{klm}=\delta_{il}\delta_{jm}-\delta_{im}\delta_{jl}\,\dots\\ & = \sum_{j}\sum_{lm}(\delta_{il}\delta_{jm}-\delta_{im}\delta_{jl})A_jB_iC_m \\ & = \sum_j (A_jB_iC_j - A_jB_jC_i ) \\ & = (\mathbf{A}\cdot \mathbf{C})B_i-(\mathbf{A}\cdot\mathbf{B})C_i \end{aligned}

In compact form resulted identity (1):

\mathbf{A}\times (\mathbf{B}\times \mathbf{C})=(\mathbf{A}\cdot \mathbf{C})\mathbf{B}-(\mathbf{A}\cdot\mathbf{B})\mathbf{C}